cg-from-scratch/src/raytracer/main.c
2024-02-04 00:19:11 +00:00

366 lines
10 KiB
C

#include "c_cpp_aliases/aliases.h"
#include "vector/vec.h"
#include "window/window.h"
#include <SDL2/SDL_events.h>
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#define ARR_LEN(ARR) sizeof(ARR) / sizeof(ARR[0])
typedef struct {
f32 radius;
vec3f_t centre;
colour_t colour;
f32 specular;
} sphere_t;
typedef enum {
LIGHT_TYPE_POINT,
LIGHT_TYPE_DIRECTIONAL,
LIGHT_TYPE_AMBIENT,
COUNT_LIGHT_TYPE,
} light_type_t;
typedef struct {
light_type_t type;
f32 intensity;
union {
vec3f_t position;
vec3f_t direction;
};
} light_t;
typedef struct {
sphere_t *spheres;
light_t *lights;
u32 spheres_count;
u32 lights_count;
} scene_t;
typedef struct {
f32 t1;
f32 t2;
} solutions_t;
typedef struct {
f32 closest_t;
sphere_t *closest_sphere;
} intersection_t;
colour_t trace_ray(vec3f_t origin, vec3f_t direction, f32 t_min, f32 t_max,
const scene_t *scene, colour_t default_colour);
intersection_t find_closest_intersection(vec3f_t origin, vec3f_t direction,
f32 t_min, f32 t_max,
const scene_t *scene);
f32 calculate_lighting_for_intersection(vec3f_t origin, vec3f_t direction,
intersection_t intersection,
const scene_t *scene);
solutions_t ray_intersects_sphere(vec3f_t origin, vec3f_t direction,
sphere_t sphere);
f32 compute_lighting(vec3f_t position, vec3f_t surface_normal,
vec3f_t view_vector, f32 specular_exponent,
const scene_t *scene);
f32 light_diffuse(f32 light_intensity, vec3f_t light_direction,
vec3f_t surface_normal);
f32 light_specular(f32 light_intensity, vec3f_t light_direction,
vec3f_t surface_normal, vec3f_t view_vector,
f32 specular_exponent);
f32 cos_angle_between_vectors(vec3f_t v1, vec3f_t v2);
f32 clamp(f32 value, f32 min, f32 max);
i32 main(i32 argc, char *argv[]) {
colour_t bg =
(colour_t){.rgba.r = 27, .rgba.g = 38, .rgba.b = 79, .rgba.a = 255};
vec3f_t camera = {.x = 0.0f, .y = 0.0f, .z = 0.0f};
vec3f_t viewport = {.x = 1.0f, .y = 1.0f, .z = 1.0f};
window_t window = {0};
if (!init_window(&window, 800, 800, "CG From Scratch")) {
return EXIT_FAILURE;
}
bool running = true;
SDL_Event event = {0};
sphere_t spheres[] = {
(sphere_t){
.radius = 1.0f,
.centre = (vec3f_t){.x = 0.0f, .y = -1.0f, .z = 3.0f},
.colour =
(colour_t){
.rgba.r = 245, .rgba.g = 238, .rgba.b = 158, .rgba.a = 255},
.specular = 500.0f,
},
(sphere_t){
.radius = 1.0f,
.centre = (vec3f_t){.x = -2.0f, .y = 0.0f, .z = 4.0f},
.colour =
(colour_t){
.rgba.r = 59, .rgba.g = 142, .rgba.b = 165, .rgba.a = 255},
.specular = 10.0f,
},
(sphere_t){
.radius = 1.0f,
.centre = (vec3f_t){.x = 2.0f, .y = 0.0f, .z = 4.0f},
.colour =
(colour_t){
.rgba.r = 171, .rgba.g = 52, .rgba.b = 40, .rgba.a = 255},
.specular = 500.0f,
},
(sphere_t){
.radius = 5000.0f,
.centre = (vec3f_t){.x = 0.0f, .y = -5001.0f, .z = 0.0f},
.colour =
(colour_t){
.rgba.r = 255, .rgba.g = 255, .rgba.b = 0, .rgba.a = 255},
.specular = 1000.0f,
},
};
light_t lights[] = {
(light_t){
.type = LIGHT_TYPE_AMBIENT,
.intensity = 0.2f,
},
(light_t){
.type = LIGHT_TYPE_POINT,
.intensity = 0.6f,
.position = (vec3f_t){.x = 2.0f, .y = 1.0f, .z = 0.0f},
},
(light_t){
.type = LIGHT_TYPE_DIRECTIONAL,
.intensity = 0.2f,
.direction = (vec3f_t){.x = 1.0f, .y = 4.0f, .z = 4.0f},
},
};
scene_t scene = {
.spheres = spheres,
.lights = lights,
.spheres_count = ARR_LEN(spheres),
.lights_count = ARR_LEN(lights),
};
i32 w_min = ((i32)window.half_width) * -1;
i32 w_max = (i32)window.half_width;
i32 h_min = ((i32)window.half_height) * -1;
i32 h_max = (i32)window.half_height;
while (running) {
while (SDL_PollEvent(&event)) {
switch (event.type) {
case SDL_QUIT:
running = false;
break;
}
}
clear_window(&window, bg);
for (i32 y = h_min; y < h_max; ++y) {
for (i32 x = w_min; x < w_max; ++x) {
vec3f_t direction = window_to_viewport(&window, x, y, viewport);
colour_t colour = trace_ray(camera, direction, 1, INFINITY, &scene, bg);
set_pixel(&window, x, y, colour);
}
}
swap_buffers(&window);
}
close_window(&window);
return EXIT_SUCCESS;
}
colour_t trace_ray(vec3f_t origin, vec3f_t direction, f32 t_min, f32 t_max,
const scene_t *scene, colour_t default_colour) {
intersection_t intersection =
find_closest_intersection(origin, direction, t_min, t_max, scene);
if (!intersection.closest_sphere) {
return default_colour;
}
f32 light = calculate_lighting_for_intersection(origin, direction,
intersection, scene);
f32 r = (f32)(intersection.closest_sphere->colour.rgba.r) * light;
r = clamp(r, 0.0f, (f32)UINT8_MAX);
f32 g = (f32)(intersection.closest_sphere->colour.rgba.g) * light;
g = clamp(g, 0.0f, (f32)UINT8_MAX);
f32 b = (f32)(intersection.closest_sphere->colour.rgba.b) * light;
b = clamp(b, 0.0f, (f32)UINT8_MAX);
return (colour_t){
.rgba.r = (u8)r,
.rgba.g = (u8)g,
.rgba.b = (u8)b,
.rgba.a = intersection.closest_sphere->colour.rgba.a,
};
}
intersection_t find_closest_intersection(vec3f_t origin, vec3f_t direction,
f32 t_min, f32 t_max,
const scene_t *scene) {
f32 closest_t = INFINITY;
sphere_t *closest_sphere = NULL;
for (u32 i = 0; i < scene->spheres_count; ++i) {
solutions_t solutions =
ray_intersects_sphere(origin, direction, scene->spheres[i]);
if (solutions.t1 >= t_min && solutions.t1 <= t_max &&
solutions.t1 < closest_t) {
closest_t = solutions.t1;
closest_sphere = &(scene->spheres[i]);
}
if (solutions.t2 >= t_min && solutions.t2 <= t_max &&
solutions.t2 < closest_t) {
closest_t = solutions.t2;
closest_sphere = &(scene->spheres[i]);
}
}
return (intersection_t){closest_t, closest_sphere};
}
f32 calculate_lighting_for_intersection(vec3f_t origin, vec3f_t direction,
intersection_t intersection,
const scene_t *scene) {
vec3f_t position = vec_add(
vec3f_t, origin, vec_mul_num(vec3f_t, direction, intersection.closest_t));
vec3f_t surface_normal =
vec_sub(vec3f_t, position, intersection.closest_sphere->centre);
surface_normal = vec_div_num(vec3f_t, surface_normal,
vec_magnitude(vec3f_t, surface_normal));
vec3f_t view_vector = vec_mul_num(vec3f_t, direction, -1.0f);
return compute_lighting(position, surface_normal, view_vector,
intersection.closest_sphere->specular, scene);
}
solutions_t ray_intersects_sphere(vec3f_t origin, vec3f_t direction,
sphere_t sphere) {
f32 r = sphere.radius;
vec3f_t CO = vec_sub(vec3f_t, origin, sphere.centre);
f32 a = vec_dot(vec3f_t, direction, direction);
f32 b = 2.0f * vec_dot(vec3f_t, CO, direction);
f32 c = vec_dot(vec3f_t, CO, CO) - r * r;
f32 discriminant = b * b - 4 * a * c;
if (discriminant < 0) {
return (solutions_t){INFINITY, INFINITY};
}
f32 t1 = (-b + sqrtf(discriminant)) / (2 * a);
f32 t2 = (-b - sqrtf(discriminant)) / (2 * a);
return (solutions_t){t1, t2};
}
f32 compute_lighting(vec3f_t position, vec3f_t surface_normal,
vec3f_t view_vector, f32 specular_exponent,
const scene_t *scene) {
f32 I = 0.0f;
light_t light = {0};
for (u32 i = 0; i < scene->lights_count; ++i) {
light = scene->lights[i];
if (light.type == LIGHT_TYPE_AMBIENT) {
I += light.intensity;
} else {
vec3f_t light_direction = {0};
f32 t_max = FLT_EPSILON;
switch (light.type) {
case LIGHT_TYPE_POINT:
light_direction = vec_sub(vec3f_t, light.position, position);
t_max = 1;
break;
case LIGHT_TYPE_DIRECTIONAL:
light_direction = light.direction;
t_max = INFINITY;
break;
default:
break;
}
intersection_t shadow = find_closest_intersection(
position, light_direction, 0.001f, t_max, scene);
if (shadow.closest_sphere != NULL) {
continue;
}
I += light_diffuse(light.intensity, light_direction, surface_normal);
if (specular_exponent != -1.0f) {
I += light_specular(light.intensity, light_direction, surface_normal,
view_vector, specular_exponent);
}
}
}
return I;
}
f32 light_diffuse(f32 light_intensity, vec3f_t light_direction,
vec3f_t surface_normal) {
return light_intensity *
cos_angle_between_vectors(light_direction, surface_normal);
}
f32 light_specular(f32 light_intensity, vec3f_t light_direction,
vec3f_t surface_normal, vec3f_t view_vector,
f32 specular_exponent) {
vec3f_t _2N = vec_mul_num(vec3f_t, surface_normal, 2.0f);
f32 dot_product = vec_dot(vec3f_t, light_direction, surface_normal);
vec3f_t _2N_mul_dot = vec_mul_num(vec3f_t, _2N, dot_product);
vec3f_t R = vec_sub(vec3f_t, _2N_mul_dot, light_direction);
return light_intensity *
powf(cos_angle_between_vectors(R, view_vector), specular_exponent);
}
f32 cos_angle_between_vectors(vec3f_t v1, vec3f_t v2) {
f32 dot_product = vec_dot(vec3f_t, v1, v2);
if (dot_product < 0.0f) {
return 0.0f;
}
f32 divisor = vec_magnitude(vec3f_t, v1) * vec_magnitude(vec3f_t, v2);
if (divisor == 0.0f) {
return 0.0f;
}
return dot_product / divisor;
}
f32 clamp(f32 value, f32 min, f32 max) {
if (value < min) {
return min;
}
if (value > max) {
return max;
}
return value;
}