mike-shah-opengl-series/src/main.cc
2024-09-29 15:48:43 +01:00

544 lines
18 KiB
C++

// GLAD
#include "glad/glad.h"
// GLM
#define GLM_ENABLE_EXPERIMENTAL
#include "glm/ext/matrix_transform.hpp"
#include "glm/ext/vector_float3.hpp"
#include "glm/gtc/type_ptr.hpp"
#include "glm/trigonometric.hpp"
#include "glm/gtx/rotate_vector.hpp"
#include "glm/gtx/string_cast.hpp"
// SDL
#include <SDL2/SDL.h>
#include <SDL2/SDL_stdinc.h>
#include <SDL2/SDL_error.h>
#include <SDL2/SDL_video.h>
#include <SDL2/SDL_events.h>
#include <SDL2/SDL_mouse.h>
#include <SDL2/SDL_keycode.h>
// STDLIB
#include <cstdint>
#include <cstdio>
#include <cmath>
#include <string>
#include <vector>
#define WINDOW_WIDTH 1280
#define WINDOW_HEIGHT 720
#define WINDOW_HALF_WIDTH 640
#define WINDOW_HALF_HEIGHT 360
enum exit_codes : int {
EXIT_CODE_SUCCESS,
EXIT_CODE_SDL_INIT_FAILED,
EXIT_CODE_WINDOW_CREATION_FAILED,
EXIT_CODE_OPENGL_CONTEXT_FAILED,
EXIT_CODE_GLAD_LOADER_FAILED,
};
struct Camera {
// Point in world coordinates where the camera is located
glm::vec3 position;
// view_direction is an actual direction vector. When used with glm::lookAt, it gets added to the
// position to calculate the target point the camera is looking at
glm::vec3 view_direction;
// The up vector in world coordinates
glm::vec3 up;
// pitch, yaw
glm::vec2 rotation;
// View matrix to be sent as uniform to the vertex shader
glm::mat4 view_mat;
// Projection matrix to be sent as uniform to the vertex shader
glm::mat4 projection_mat;
};
struct Transform {
glm::mat4 translation;
glm::mat4 rotation;
glm::mat4 scale;
};
struct Mesh {
// VAO is an object that stores the state needed to supply the GPU with the vertex data.
// Think of it as a specification or a C struct that defines the types of data stored for the
// vertex array including the attributes for each vertex as well the indices buffer if it exists.
GLuint vao;
// The buffer that contains all the vertex data
// e.g. assume 3 vertices with position, colour and uv, the buffer would look like this
// -----------------------------------------------------------------------------------
// | position1 | colour1 | uv1 | position2 | colour2 | uv2 | position3 | colour3 | uv3 |
// -----------------------------------------------------------------------------------
GLuint vbo;
// Holds the indices of the vertices that draw each triangle. Each triangle constitutes what
// OpenGL refers to as element, hence the name Element Buffer Object
GLuint ebo;
GLuint shader_program;
GLuint vertices_count;
};
struct Model {
Transform transform;
Mesh mesh;
// Model matrix to be sent as uniform to the vertex shader
glm::mat4 model_mat;
GLint u_model_idx;
GLint u_view_idx;
GLint u_projection_idx;
};
struct App {
SDL_Window *window;
SDL_GLContext context;
SDL_Event event;
Model plane;
Model floor;
Camera camera;
float speed;
glm::vec2 prev_mouse;
bool running;
};
int init (App &app);
void create_vertex_spec (Model &model, const std::vector<GLfloat> &vertices, const std::vector<GLuint> &indices);
void create_graphics_pipeline (Model &model, Camera &camera, const char *vs_file, const char *fs_file);
void run_main_loop (App &app);
void cleanup (App &app);
void render_model (const Model &model, const Camera &camera);
GLuint create_shader_program (const std::string &vertex_shader_source, const std::string &fragment_shader_source);
GLuint compile_shader (GLuint type, const std::string &source);
std::string load_shader (const std::string &filepath);
void handle_object_movement (App &app);
void handle_camera_movement (App &app);
glm::vec3 rotation_to_view_direction(const Camera &camera);
int main() {
App app = {};
int result = init(app);
if (result != EXIT_CODE_SUCCESS) {
return result;
}
const std::vector<GLfloat> plane_vertices = {
// vert0
-0.5f, -0.5f, 0.0f, // position
1.0f, 0.0f, 0.0f, // colour
// vert1
0.5f, -0.5f, 0.0f, // position
0.0f, 1.0f, 0.0f, // colour
// vert2
-0.5f, 0.5f, 0.0f, // position
0.0f, 0.0f, 1.0f, // colour
// vert3
0.5f, 0.5f, 0.0f, // position
1.0f, 1.0f, 0.0f, // colour
};
const std::vector<GLuint> plane_indices = {
// first triangle
0, 1, 2,
// second triangle
2, 1, 3,
};
const std::vector<GLfloat> floor_vertices = {
// vert0
-10.0f, 0.0f, 10.0f, // position
0.23529f, 0.43137f, 0.44313f, // colour
// vert1
10.0f, 0.0f, 10.0f, // position
0.23529f, 0.43137f, 0.44313f, // colour
// vert2
-10.0f, 0.0f, -10.0f, // position
0.23529f, 0.43137f, 0.44313f, // colour
// vert3
10.0f, 0.0f, -10.0f, // position
0.23529f, 0.43137f, 0.44313f, // colour
};
const std::vector<GLuint> floor_indices = {
// first triangle
0, 1, 2,
// second triangle
2, 1, 3,
};
// Setup the geometry
create_vertex_spec(app.plane, plane_vertices, plane_indices);
create_vertex_spec(app.floor, floor_vertices, floor_indices);
// Setup graphics pipeline. At the very minimum creating vertex and fragment shaders
create_graphics_pipeline(app.plane, app.camera, "shaders/vert.glsl", "shaders/frag.glsl");
create_graphics_pipeline(app.floor, app.camera, "shaders/vert.glsl", "shaders/frag.glsl");
run_main_loop(app);
cleanup(app);
return EXIT_CODE_SUCCESS;
}
int init(App &app) {
if (SDL_Init(SDL_INIT_EVERYTHING) != 0) {
fprintf(stderr, "Failed to initialise SDL: %s", SDL_GetError());
return EXIT_CODE_SDL_INIT_FAILED;
}
uint32_t flags = SDL_WINDOW_SHOWN | SDL_WINDOW_OPENGL | SDL_WINDOW_ALLOW_HIGHDPI;
app.window = SDL_CreateWindow("Window", SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
WINDOW_WIDTH, WINDOW_HEIGHT, flags);
if (!app.window) {
fprintf(stderr, "Failed to create window: %s", SDL_GetError());
return EXIT_CODE_WINDOW_CREATION_FAILED;
}
SDL_WarpMouseInWindow(app.window, WINDOW_HALF_WIDTH, WINDOW_HALF_HEIGHT);
SDL_SetRelativeMouseMode(SDL_TRUE);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 4);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 6);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 24);
app.context = SDL_GL_CreateContext(app.window);
if (!app.context) {
fprintf(stderr, "Failed to create OpenGL context: %s", SDL_GetError());
return EXIT_CODE_OPENGL_CONTEXT_FAILED;
}
// Init GLAD
if (!gladLoadGLLoader(SDL_GL_GetProcAddress)) {
fprintf(stderr, "Failed to initialise glad");
return EXIT_CODE_GLAD_LOADER_FAILED;
}
printf("%s\n%s\n%s\n%s\n",
glGetString(GL_VENDOR),
glGetString(GL_RENDERER),
glGetString(GL_VERSION),
glGetString(GL_SHADING_LANGUAGE_VERSION)
);
app.speed = 0.04f;
app.plane.transform.translation = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.5f, -1.0f));
app.plane.transform.rotation = glm::mat4(1.0f);
app.plane.transform.scale = glm::mat4(1.0f);
app.plane.model_mat = app.plane.transform.translation *
app.plane.transform.rotation * app.plane.transform.scale;
app.floor.transform.translation = glm::mat4(1.0f);
app.floor.transform.rotation = glm::mat4(1.0f);
app.floor.transform.scale = glm::mat4(1.0f);
app.floor.model_mat = app.floor.transform.translation *
app.floor.transform.rotation * app.floor.transform.scale;
app.camera.rotation = glm::vec2(-5.0f, -90.0f);
app.camera.position = glm::vec3(0.0f, 0.5f, 3.0f);
app.camera.view_direction = rotation_to_view_direction(app.camera);
app.camera.up = glm::vec3(0.0f, 1.0f, 0.0f);
app.camera.view_mat = glm::lookAt(app.camera.position, app.camera.position + app.camera.view_direction, app.camera.up);
app.camera.projection_mat = glm::perspective(glm::radians(60.0f),
(float)WINDOW_WIDTH / (float)WINDOW_HEIGHT,
0.1f,
20.0f);
app.prev_mouse = glm::vec2(WINDOW_HALF_WIDTH, WINDOW_HALF_HEIGHT);
return EXIT_CODE_SUCCESS;
}
void create_vertex_spec(Model &model, const std::vector<GLfloat> &vertices, const std::vector<GLuint> &indices) {
// Create and activate the VAO
glGenVertexArrays(1, &model.mesh.vao);
glBindVertexArray(model.mesh.vao);
// Create and set up the VBO
glGenBuffers(1, &model.mesh.vbo);
glBindBuffer(GL_ARRAY_BUFFER, model.mesh.vbo);
glBufferData(GL_ARRAY_BUFFER,
vertices.size() * sizeof(GLfloat),
(void *)vertices.data(),
GL_STATIC_DRAW
);
// Create and set up the EBO
glGenBuffers(1, &model.mesh.ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, model.mesh.ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
indices.size() * sizeof(GLuint),
(void *)indices.data(),
GL_STATIC_DRAW
);
GLsizei vertex_stride = 6 * sizeof(GLfloat);
GLvoid *position_start_offset = (void *)0;
GLvoid *colour_start_offset = (void *)(3 * sizeof(GLfloat));
// Defines the vertex attributes and their indices. This defines the attribute for the currently
// bound VAO
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
// Defines the number of components for the attribute, its type, the stride between the component
// for each vertex and the offset of the first instance of the component in the buffer
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, vertex_stride, position_start_offset);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, vertex_stride, colour_start_offset);
// Cleanup.
// The order matters. Unbind VAO first then disable the attributes. If you do it the
// other way around, the VAO will store that the attributes are disabled and nothing will be
// drawn during the rendering stage
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
model.mesh.vertices_count = indices.size();
}
void create_graphics_pipeline(Model &model, Camera &camera, const char *vs_file, const char *fs_file) {
const std::string vs_source = load_shader(vs_file);
const std::string fs_source = load_shader(fs_file);
model.mesh.shader_program = create_shader_program(vs_source, fs_source);
const char *u_model = "u_model";
model.u_model_idx = glGetUniformLocation(model.mesh.shader_program, u_model);
if (model.u_model_idx < 0) {
printf("Failed to find uniform %s\n", u_model);
}
const char *u_view = "u_view";
model.u_view_idx = glGetUniformLocation(model.mesh.shader_program, u_view);
if (model.u_view_idx < 0) {
printf("Failed to find uniform %s\n", u_view);
}
const char *u_projection = "u_projection";
model.u_projection_idx = glGetUniformLocation(model.mesh.shader_program, u_projection);
if (model.u_projection_idx < 0) {
printf("Failed to find uniform %s\n", u_projection);
}
}
void run_main_loop(App &app) {
app.running = true;
while (app.running) {
while (SDL_PollEvent(&app.event)) {
switch (app.event.type) {
case SDL_QUIT:
app.running = false;
break;
case SDL_KEYDOWN:
if (app.event.key.keysym.sym == SDLK_ESCAPE) {
app.running = false;
} else {
handle_camera_movement(app);
}
break;
case SDL_MOUSEMOTION:
handle_camera_movement(app);
break;
}
}
// Pre draw setup
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glViewport (0, 0, WINDOW_WIDTH, WINDOW_HEIGHT);
glClearColor(0.36f, 0.34f, 0.42f, 1.0f);
glClear (GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
// Render models
render_model(app.floor, app.camera);
render_model(app.plane, app.camera);
// Not necessary if we only have one shader program
glUseProgram(0);
SDL_GL_SwapWindow(app.window);
}
}
void cleanup(App &app) {
SDL_GL_DeleteContext(app.context);
SDL_DestroyWindow(app.window);
SDL_Quit();
}
void render_model(const Model &model, const Camera &camera) {
glUseProgram(model.mesh.shader_program);
if (model.u_model_idx >= 0) {
glUniformMatrix4fv(model.u_model_idx, 1, GL_FALSE, glm::value_ptr(model.model_mat));
}
if (model.u_view_idx >= 0) {
glUniformMatrix4fv(model.u_view_idx, 1, GL_FALSE, glm::value_ptr(camera.view_mat));
}
if (model.u_projection_idx >= 0) {
glUniformMatrix4fv(model.u_projection_idx, 1, GL_FALSE, glm::value_ptr(camera.projection_mat));
}
glBindVertexArray(model.mesh.vao);
glDrawElements (GL_TRIANGLES, model.mesh.vertices_count, GL_UNSIGNED_INT, (void *)0);
}
GLuint create_shader_program(const std::string &vertex_shader_source, const std::string &fragment_shader_source) {
GLuint shader_program = glCreateProgram();
GLuint vertex_shader = compile_shader(GL_VERTEX_SHADER, vertex_shader_source);
GLuint fragment_shader = compile_shader(GL_FRAGMENT_SHADER, fragment_shader_source);
glAttachShader(shader_program, vertex_shader);
glAttachShader(shader_program, fragment_shader);
glLinkProgram (shader_program);
GLint link_status;
glGetProgramiv(shader_program, GL_LINK_STATUS, &link_status);
if (link_status != GL_TRUE) {
GLsizei log_length = 0;
GLchar message[1024];
glGetProgramInfoLog(shader_program, 1024, &log_length, message);
fprintf(stderr, "Failed to link program: %s\n", message);
}
// Validate the shader_program
glValidateProgram(shader_program);
GLint validation_status;
glGetProgramiv(shader_program, GL_VALIDATE_STATUS, &validation_status);
if (validation_status != GL_TRUE) {
GLsizei log_length = 0;
GLchar message[1024];
glGetProgramInfoLog(shader_program, 1024, &log_length, message);
fprintf(stderr, "Failed to validate program: %s\n", message);
}
return shader_program;
}
GLuint compile_shader(GLuint type, const std::string &source) {
GLuint shader = glCreateShader(type);
const char *shader_source = source.c_str();
glShaderSource (shader, 1, &shader_source, NULL);
glCompileShader(shader);
GLint compile_status;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compile_status);
if (compile_status != GL_TRUE) {
GLsizei log_length = 0;
GLchar message[1024];
glGetShaderInfoLog(shader, 1024, &log_length, message);
fprintf(stderr, "Failed to compile shader: %s\n", message);
}
return shader;
}
std::string load_shader(const std::string &filepath) {
FILE *fp = fopen(filepath.c_str(), "r");
if (!fp) {
return "";
}
std::string output = {};
char buf[1024] = {0};
while (fgets(buf, sizeof(buf), fp)) {
output += buf;
}
return output;
}
// Example of moving an object
void handle_object_movement(App &app) {
switch (app.event.key.keysym.sym) {
case SDLK_w:
app.plane.transform.translation = glm::translate(app.plane.transform.translation,
glm::vec3(0.0f, 0.0f, app.speed));
break;
case SDLK_s:
app.plane.transform.translation = glm::translate(app.plane.transform.translation,
glm::vec3(0.0f, 0.0f, -app.speed));
break;
case SDLK_d:
app.plane.transform.translation = glm::translate(app.plane.transform.translation,
glm::vec3(app.speed, 0.0f, 0.0f));
break;
case SDLK_a:
app.plane.transform.translation = glm::translate(app.plane.transform.translation,
glm::vec3(-app.speed, 0.0f, 0.0f));
break;
case SDLK_RIGHT:
app.plane.transform.rotation = glm::rotate(app.plane.transform.rotation,
glm::radians(10.0f), glm::vec3(0.0f, 1.0f, 0.0f));
break;
case SDLK_LEFT:
app.plane.transform.rotation = glm::rotate(app.plane.transform.rotation,
glm::radians(-10.0f), glm::vec3(0.0f, 1.0f, 0.0f));
break;
case SDLK_r:
app.plane.transform.scale = glm::scale(app.plane.transform.scale, glm::vec3(1.2f));
break;
case SDLK_e:
app.plane.transform.scale = glm::scale(app.plane.transform.scale, glm::vec3(0.8f));
break;
default:
return;
}
app.plane.model_mat = app.plane.transform.translation * app.plane.transform.rotation * app.plane.transform.scale;
app.floor.model_mat = app.floor.transform.translation * app.floor.transform.rotation * app.floor.transform.scale;
}
void handle_camera_movement(App &app) {
if (app.event.type == SDL_MOUSEMOTION) {
glm::vec2 offset = glm::vec2(-app.event.motion.yrel, app.event.motion.xrel) * 0.1f;
app.prev_mouse += offset;
app.camera.rotation += offset;
app.camera.rotation.x = glm::clamp(app.camera.rotation.x, -89.0f, 89.0f);
app.camera.view_direction = rotation_to_view_direction(app.camera);
} else {
switch (app.event.key.keysym.sym) {
case SDLK_w:
app.camera.position += app.camera.view_direction * app.speed;
break;
case SDLK_s:
app.camera.position -= app.camera.view_direction * app.speed;
break;
case SDLK_d:
app.camera.position += glm::normalize(glm::cross(app.camera.view_direction, app.camera.up)) * app.speed;
break;
case SDLK_a:
app.camera.position -= glm::normalize(glm::cross(app.camera.view_direction, app.camera.up)) * app.speed;
break;
default:
return;
}
}
app.camera.view_mat = glm::lookAt(app.camera.position, app.camera.position + app.camera.view_direction, app.camera.up);
}
glm::vec3 rotation_to_view_direction(const Camera &camera) {
glm::vec3 direction;
direction.x = cos(glm::radians(camera.rotation.y)) * cos(glm::radians(camera.rotation.x));
direction.y = sin(glm::radians(camera.rotation.x));
direction.z = sin(glm::radians(camera.rotation.y)) * cos(glm::radians(camera.rotation.x));
return glm::normalize(direction);
}