performance-aware-programming/8086_sim/sim86.cpp

358 lines
8.3 KiB
C++

#include "include/aliases.h"
#include "include/flag_access.h"
#include "include/reg_access.h"
#include "include/sim86_instruction.h"
#include "include/sim86_lib.h"
#include <bits/types/FILE.h>
#include <stdio.h>
#include <string.h>
#define MEM_SIZE (1 << 16)
#define BITS_PER_BYTE 8
struct basic_string {
char str[4096];
};
struct membuf {
u8 buffer[MEM_SIZE];
u64 mem_start;
};
struct mem_access_result {
u16 value;
u32 error;
};
u16 get_operand_value(instruction_operand operand, bool wide);
basic_string get_operand_string(instruction_operand operand, bool wide);
void print_instruction(instruction inst);
void mov_to_register(const register_access &reg,
const instruction_operand &source, bool wide);
void mov_to_memory(const effective_address_expression &addrexp,
const instruction_operand &source, bool wide);
mem_access_result get_mem_value(const effective_address_expression &addrexp,
bool wide);
mem_access_result set_mem_value(const effective_address_expression &addrexp,
u16 value, bool wide);
u16 get_mem_index(const effective_address_expression &addrexp);
static membuf memory;
int main(int argc, char *argv[]) {
if (argc < 2) {
printf("Usage: sim86 BINARY_FILE\n");
return 1;
}
memset((void *)memory.buffer, 0, MEM_SIZE);
memory.mem_start = 0;
const char *filename = argv[1];
printf("Filename: %s\n", filename);
FILE *fp = fopen(filename, "rb");
if (!fp) {
printf("Failed to open file %s\n", filename);
}
fseek(fp, 0, SEEK_END);
u32 size = ftell(fp);
fseek(fp, 0, SEEK_SET);
fread((void *)memory.buffer, sizeof(u8), size, fp);
memory.mem_start = size + 1;
fclose(fp);
instruction_table table;
Sim86_Get8086InstructionTable(&table);
u32 offset = 0;
bool accessed_registers[REGISTER_COUNT] = {false};
printf("\nDisassembly:\n");
while (offset < size) {
instruction decoded;
Sim86_Decode8086Instruction(size - offset, memory.buffer + offset,
&decoded);
if (decoded.Op) {
offset += decoded.Size;
bool wide = (decoded.Flags & Inst_Wide) == Inst_Wide;
print_instruction(decoded);
instruction_operand dest = decoded.Operands[0];
instruction_operand source = decoded.Operands[1];
switch (decoded.Op) {
case Op_mov: {
if (dest.Type == Operand_Register) {
mov_to_register(dest.Register, source, wide);
accessed_registers[dest.Register.Index] = true;
} else if (dest.Type == Operand_Memory) {
mov_to_memory(dest.Address, source, wide);
}
break;
}
case Op_add: {
if (dest.Type == Operand_Register) {
u16 value = get_register(dest.Register);
value += get_operand_value(source, wide);
set_flags(value);
set_register(dest.Register, value);
}
break;
}
case Op_sub:
case Op_cmp: {
if (dest.Type == Operand_Register) {
u16 value = get_register(dest.Register);
value -= get_operand_value(source, wide);
set_flags(value);
if (decoded.Op == Op_sub) {
set_register(dest.Register, value);
}
}
break;
}
case Op_jne: {
if (!get_flag(FLAG_ZERO)) {
i16 inst_offset = get_operand_value(dest, wide);
offset += inst_offset;
}
}
default:
break;
}
}
}
printf("\nFinal registers:\n");
for (u32 i = 0; i < REGISTER_COUNT; ++i) {
if (accessed_registers[i]) {
register_access reg = {i, 0, 2};
u16 value = get_register(reg);
printf("\t%s: 0x%04x (%d)\n", get_register_name(reg), value, value);
}
}
// Print the instruction pointer register
printf("\tip: 0x%04x (%d)\n", offset, offset);
printf("\nFinal flags:\n");
print_flags();
#if 0 // Only needed (and working) for listing 0054
#define SIZE 64
#define BYTES SIZE * 4 * SIZE
u8 image[BYTES];
mempcpy(image, &(memory.buffer[memory.mem_start + (SIZE * 4)]), BYTES);
FILE *out = fopen("image.data", "wb");
fwrite(image, sizeof(u8), BYTES, out);
fclose(out);
#endif
return 0;
}
u16 get_operand_value(instruction_operand operand, bool wide) {
u16 output = 0;
switch (operand.Type) {
case Operand_Register:
output = get_register(operand.Register);
break;
case Operand_Memory: {
mem_access_result result = get_mem_value(operand.Address, wide);
if (result.error) {
break;
}
output = result.value;
break;
}
case Operand_Immediate:
output = operand.Immediate.Value;
break;
default:
break;
}
return output;
}
basic_string get_operand_string(instruction_operand operand, bool wide) {
basic_string output = {""};
switch (operand.Type) {
case Operand_Register:
sprintf(output.str, "%s", get_register_name(operand.Register));
break;
case Operand_Memory: {
char mem_string[1024] = {0};
register_access reg1 = operand.Address.Terms[0].Register;
if (reg1.Index != 0) {
sprintf(mem_string, "%s + ", get_register_name(reg1));
}
register_access reg2 = operand.Address.Terms[1].Register;
if (reg2.Index != 0) {
strcat(mem_string, get_register_name(reg2));
} else {
u32 length = strlen(mem_string);
sprintf(&(mem_string[length]), "%d", operand.Address.Displacement);
}
sprintf(output.str, "%s [%s]", wide ? "word" : "byte", mem_string);
break;
}
case Operand_Immediate:
sprintf(output.str, "%d", operand.Immediate.Value);
break;
default:
break;
}
return output;
}
void print_instruction(instruction inst) {
bool wide = (inst.Flags & Inst_Wide) == Inst_Wide;
printf("\t%s %s, %s\n", Sim86_MnemonicFromOperationType(inst.Op),
get_operand_string(inst.Operands[0], wide).str,
get_operand_string(inst.Operands[1], wide).str);
}
void mov_to_register(const register_access &reg,
const instruction_operand &source, bool wide) {
switch (source.Type) {
case Operand_Immediate:
set_register(reg, source.Immediate.Value);
break;
case Operand_Register:
set_register(reg, get_register(source.Register));
break;
case Operand_Memory: {
mem_access_result result = get_mem_value(source.Address, wide);
if (!result.error) {
set_register(reg, result.value);
}
break;
}
default:
break;
}
}
void mov_to_memory(const effective_address_expression &addrexp,
const instruction_operand &source, bool wide) {
switch (source.Type) {
case Operand_Immediate:
set_mem_value(addrexp, source.Immediate.Value, wide);
break;
case Operand_Register:
set_mem_value(addrexp, get_register(source.Register), wide);
break;
case Operand_Memory: {
mem_access_result result = get_mem_value(source.Address, wide);
if (!result.error) {
set_mem_value(addrexp, result.value, wide);
}
break;
}
default:
break;
}
}
mem_access_result get_mem_value(const effective_address_expression &addrexp,
bool wide) {
u16 index = get_mem_index(addrexp);
mem_access_result result = {0, 0};
if (memory.mem_start + index >= MEM_SIZE) {
result.error = 1;
} else {
result.value |= memory.buffer[memory.mem_start + index];
if (wide) {
result.value |= (memory.buffer[memory.mem_start + index + 1]
<< (wide ? BITS_PER_BYTE : 0));
}
}
return result;
}
mem_access_result set_mem_value(const effective_address_expression &addrexp,
u16 value, bool wide) {
u16 index = get_mem_index(addrexp);
mem_access_result result = {0, 0};
if (memory.mem_start + index >= MEM_SIZE) {
result.error = 1;
} else {
memory.buffer[memory.mem_start + index] = (u8)value;
if (wide) {
memory.buffer[memory.mem_start + index + 1] =
(u8)(value >> (wide ? BITS_PER_BYTE : 0));
}
result.value = value;
}
return result;
}
u16 get_mem_index(const effective_address_expression &addrexp) {
u16 index = addrexp.Displacement;
const u16 term_count = 2;
for (u16 i = 0; i < term_count; ++i) {
if (addrexp.Terms[i].Register.Index != 0) {
index += get_register(addrexp.Terms[i].Register);
}
}
return index;
}