#include #include #include #include #if defined(__INTELLISENSE__) || !defined(USE_CPP20_MODULES) #include "vulkan/vulkan.hpp" #include #include #else import vulkan_hpp; #endif #define STB_IMAGE_IMPLEMENTATION #include #define GLFW_INCLUDE_VULKAN #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include constexpr uint32_t WIDTH = 800; constexpr uint32_t HEIGHT = 600; constexpr int32_t MAX_FRAMES_IN_FLIGHT = 2; struct Vertex { glm::vec2 position; glm::vec3 color; static vk::VertexInputBindingDescription getBindingDescription() { return { .binding = 0, .stride = sizeof(Vertex), .inputRate = vk::VertexInputRate::eVertex, }; } static std::array getAttributeDescriptions() { return { vk::VertexInputAttributeDescription{ .location = 0, .binding = 0, .format = vk::Format::eR32G32Sfloat, .offset = offsetof(Vertex, position), }, vk::VertexInputAttributeDescription{ .location = 1, .binding = 0, .format = vk::Format::eR32G32B32Sfloat, .offset = offsetof(Vertex, color), } }; } }; struct UniformBufferObject { alignas(16) glm::mat4 model; alignas(16) glm::mat4 view; alignas(16) glm::mat4 proj; }; const std::vector vertices = { {{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}}, {{ 0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}}, {{ 0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}, {{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}} }; const std::vector indices = { 0, 1, 2, 2, 3, 0 }; const std::vector validationLayers = { "VK_LAYER_KHRONOS_validation" }; #ifdef NDEBUG constexpr bool enableValidationLayers = false; #else constexpr bool enableValidationLayers = true; #endif static std::vector readFile(const std::string &filename) { std::ifstream file(filename, std::ios::ate | std::ios::binary); if (!file.is_open()) { throw std::runtime_error("failed to open file!"); } std::vector buffer(file.tellg()); file.seekg(0, std::ios::beg); file.read(buffer.data(), static_cast(buffer.size())); file.close(); return buffer; } class HelloTriangleApplication { public: void run() { initWindow(); initVulkan(); mainLoop(); cleanup(); } private: void initWindow() { glfwInit(); // Don't create an OpenGL context glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); glfwWindowHint(GLFW_RESIZABLE, GLFW_TRUE); window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr); glfwSetWindowUserPointer(window, this); glfwSetFramebufferSizeCallback(window, framebufferResizeCallback); } static void framebufferResizeCallback(GLFWwindow *window, int width, int height) { auto app = reinterpret_cast(glfwGetWindowUserPointer(window)); app->framebufferResized = true; } void initVulkan() { createInstance(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); createSwapChain(); createImageViews(); createDescriptorSetLayout(); createGraphicsPipeline(); createCommandPool(); createTextureImage(); createTextureImageView(); createTextureSampler(); createVertexBuffer(); createIndexBuffer(); createUniformBuffers(); createDescriptorPool(); createDescriptorSets(); createCommandBuffers(); createSyncObjects(); } void mainLoop() { while (!glfwWindowShouldClose(window)) { glfwPollEvents(); drawFrame(); } device.waitIdle(); } void drawFrame() { // Wait till fence is signalled while (vk::Result::eTimeout == device.waitForFences(*drawFences[frameIndex], vk::True, UINT64_MAX)) {} vk::Result result; uint32_t imageIndex; try { std::tie(result, imageIndex) = swapChain.acquireNextImage(UINT64_MAX, *presentCompleteSemaphores[frameIndex], nullptr); if (result == vk::Result::eErrorOutOfDateKHR) { recreateSwapChain(); return; } if (result != vk::Result::eSuccess && result != vk::Result::eSuboptimalKHR) { throw std::runtime_error("failed to acquire swap chain image!"); } } catch (const vk::SystemError &e) { if (e.code().value() == static_cast(vk::Result::eErrorOutOfDateKHR)) { recreateSwapChain(); return; } else { throw; } } device.resetFences(*drawFences[frameIndex]); updateUniformBuffer(frameIndex); recordCommandBuffer(imageIndex); vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput); const vk::SubmitInfo submitInfo = { .waitSemaphoreCount = 1, .pWaitSemaphores = &*presentCompleteSemaphores[frameIndex], .pWaitDstStageMask = &waitDestinationStageMask, .commandBufferCount = 1, .pCommandBuffers = &*commandBuffers[frameIndex], .signalSemaphoreCount = 1, .pSignalSemaphores = &*renderFinishedSemaphores[imageIndex], }; graphicsQueue.submit(submitInfo, *drawFences[frameIndex]); try { // Presentation vk::PresentInfoKHR presentInfoKHR = { .waitSemaphoreCount = 1, .pWaitSemaphores = &*renderFinishedSemaphores[imageIndex], .swapchainCount = 1, .pSwapchains = &*swapChain, .pImageIndices = &imageIndex, }; result = graphicsQueue.presentKHR(presentInfoKHR); if (result == vk::Result::eErrorOutOfDateKHR || result == vk::Result::eSuboptimalKHR || framebufferResized) { framebufferResized = false; recreateSwapChain(); } else if (result != vk::Result::eSuccess) { throw std::runtime_error("failed to present swap chain image!"); } } catch (const vk::SystemError &e) { if (e.code().value() == static_cast(vk::Result::eErrorOutOfDateKHR)) { recreateSwapChain(); return; } else { throw; } } frameIndex = (frameIndex + 1) % MAX_FRAMES_IN_FLIGHT; } void cleanup() { cleanupSwapChain(); glfwDestroyWindow(window); glfwTerminate(); } void createInstance() { constexpr vk::ApplicationInfo appInfo { .pApplicationName = "Hello Triangle", .applicationVersion = VK_MAKE_VERSION(1, 0, 0), .pEngineName = "No Engine", .engineVersion = VK_MAKE_VERSION(1, 0, 0), .apiVersion = vk::ApiVersion14, }; // Get the required layers std::vector requiredLayers; if (enableValidationLayers) { requiredLayers.assign(validationLayers.begin(), validationLayers.end()); } // Check if the required layers are supported by the Vulkan implementation. auto layerProperties = context.enumerateInstanceLayerProperties(); if (std::ranges::any_of(requiredLayers, [&layerProperties](auto const& requiredLayer) { return std::ranges::none_of(layerProperties, [requiredLayer](auto const& layerProperty) { return strcmp(layerProperty.layerName, requiredLayer) == 0; }); })) { throw std::runtime_error("One or more required layers are not supported!"); } // Get the required instance extensions from GLFW. uint32_t glfwExtensionCount = 0; auto glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); // Check if the required GLFW extensions are supported by the Vulkan implementation. auto extensionProperties = context.enumerateInstanceExtensionProperties(); for (uint32_t i = 0; i < glfwExtensionCount; ++i) { if (std::ranges::none_of(extensionProperties, [glfwExtension = glfwExtensions[i]](auto const& extensionProperty) { return strcmp(extensionProperty.extensionName, glfwExtension) == 0; })) { throw std::runtime_error("Required GLFW extension not supported: " + std::string(glfwExtensions[i])); } } vk::InstanceCreateInfo createInfo { .pApplicationInfo = &appInfo, .enabledLayerCount = static_cast(requiredLayers.size()), .ppEnabledLayerNames = requiredLayers.data(), .enabledExtensionCount = glfwExtensionCount, .ppEnabledExtensionNames = glfwExtensions, }; instance = vk::raii::Instance(context, createInfo); } void createSurface() { VkSurfaceKHR _surface; if (glfwCreateWindowSurface(*instance, window, nullptr, &_surface) != 0) { throw std::runtime_error("failed to create window surface!"); } surface = vk::raii::SurfaceKHR(instance, _surface); } void pickPhysicalDevice() { std::vector deviceExtensions = { vk::KHRSwapchainExtensionName, vk::KHRSpirv14ExtensionName, vk::KHRCreateRenderpass2ExtensionName, }; auto devices = instance.enumeratePhysicalDevices(); if (devices.empty()) { throw std::runtime_error("failed to find GPUs with Vulkan support!"); } for (const auto &device : devices) { auto deviceProperties = device.getProperties(); auto deviceFeatures = device.getFeatures(); auto queueFamilies = device.getQueueFamilyProperties(); auto extensions = device.enumerateDeviceExtensionProperties(); bool isSuitable = deviceProperties.apiVersion >= VK_API_VERSION_1_3; bool extensionFound = true; const vk::QueueFamilyProperties *qf = nullptr; for (const auto &qfp : queueFamilies) { if ((qfp.queueFlags & vk::QueueFlagBits::eGraphics) != static_cast(0)) { qf = &qfp; break; } } isSuitable = isSuitable && (qf != nullptr); for (const auto &extension : deviceExtensions) { auto extensionIter = std::ranges::find_if(extensions, [extension](auto const & ext) {return strcmp(ext.extensionName, extension) == 0;}); extensionFound = extensionFound && extensionIter != extensions.end(); } isSuitable = isSuitable && extensionFound; if (isSuitable) { physicalDevice = device; return; } throw std::runtime_error("failed to find a suitable GPU"); } } void createLogicalDevice() { std::vector queueFamilyProperties = physicalDevice.getQueueFamilyProperties(); graphicsQueueIndex = findQueueFamilies(physicalDevice); float queuePriority = 0.5f; vk::DeviceQueueCreateInfo deviceQueueCreateInfo { .queueFamilyIndex = graphicsQueueIndex, .queueCount = 1, .pQueuePriorities = &queuePriority, }; // Create a chain of feature structures vk::StructureChain featureChain = { {.features = {.samplerAnisotropy = true}}, // vk::PhysicalDeviceFeatures2 {.synchronization2 = true, .dynamicRendering = true}, // Enable dynamic rendering and synchronization2 from Vulkan 1.3 {.shaderDrawParameters = true}, // Enable shader draw parameters from Vulkan 1.2 {.extendedDynamicState = true} // Enable extended dynamic state from the extension }; std::vector deviceExtensions = { vk::KHRSwapchainExtensionName, vk::KHRSpirv14ExtensionName, vk::KHRSynchronization2ExtensionName, vk::KHRCreateRenderpass2ExtensionName }; vk::DeviceCreateInfo deviceCreateInfo { .pNext = &featureChain.get(), .queueCreateInfoCount = 1, .pQueueCreateInfos = &deviceQueueCreateInfo, .enabledExtensionCount = static_cast(deviceExtensions.size()), .ppEnabledExtensionNames = deviceExtensions.data(), }; device = vk::raii::Device(physicalDevice, deviceCreateInfo); graphicsQueue = vk::raii::Queue(device, graphicsQueueIndex, 0); } void createSwapChain() { auto surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface); swapChainSurfaceFormat = chooseSwapSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surface)); swapChainExtent = chooseSwapExtent(surfaceCapabilities); auto minImageCount = std::max(3u, surfaceCapabilities.minImageCount); minImageCount = (surfaceCapabilities.maxImageCount > 0 && minImageCount > surfaceCapabilities.maxImageCount) ? surfaceCapabilities.maxImageCount : minImageCount; vk::SwapchainCreateInfoKHR swapChainCreateInfo { .flags = vk::SwapchainCreateFlagsKHR(), .surface = surface, .minImageCount = minImageCount, .imageFormat = swapChainSurfaceFormat.format, .imageColorSpace = swapChainSurfaceFormat.colorSpace, .imageExtent = swapChainExtent, .imageArrayLayers = 1, .imageUsage = vk::ImageUsageFlagBits::eColorAttachment, .imageSharingMode = vk::SharingMode::eExclusive, .preTransform = surfaceCapabilities.currentTransform, .compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque, .presentMode = chooseSwapPresentMode(physicalDevice.getSurfacePresentModesKHR(surface)), .clipped = true, .oldSwapchain = nullptr, }; swapChain = vk::raii::SwapchainKHR(device, swapChainCreateInfo); swapChainImages = swapChain.getImages(); swapChainImageFormat = swapChainSurfaceFormat.format; } void createImageViews() { swapChainImageViews.clear(); vk::ImageViewCreateInfo imageViewCreateInfo{ .viewType = vk::ImageViewType::e2D, .format = swapChainImageFormat, .subresourceRange = { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 } }; for (auto image : swapChainImages) { imageViewCreateInfo.image = image; swapChainImageViews.emplace_back(vk::raii::ImageView(device, imageViewCreateInfo)); } } void createDescriptorSetLayout() { vk::DescriptorSetLayoutBinding binding(0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex, nullptr); vk::DescriptorSetLayoutCreateInfo layoutInfo{ .bindingCount = 1, .pBindings = &binding, }; descriptorSetLayout = vk::raii::DescriptorSetLayout(device, layoutInfo); } void createGraphicsPipeline() { vk::raii::ShaderModule shaderModule = createShaderModule(readFile("shaders/22_shader_ubo.spv")); vk::PipelineShaderStageCreateInfo vertShaderStageInfo = { .stage = vk::ShaderStageFlagBits::eVertex, .module = shaderModule, .pName = "vertMain", }; vk::PipelineShaderStageCreateInfo fragShaderStageInfo = { .stage = vk::ShaderStageFlagBits::eFragment, .module = shaderModule, .pName = "fragMain", }; vk::PipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo}; // Vertex input auto bindingDescription = Vertex::getBindingDescription(); auto attributeDescriptions = Vertex::getAttributeDescriptions(); vk::PipelineVertexInputStateCreateInfo vertexInputInfo{ .vertexBindingDescriptionCount = 1, .pVertexBindingDescriptions = &bindingDescription, .vertexAttributeDescriptionCount = attributeDescriptions.size(), .pVertexAttributeDescriptions = attributeDescriptions.data(), }; // Input assembly vk::PipelineInputAssemblyStateCreateInfo inputAssembly = { .topology = vk::PrimitiveTopology::eTriangleList, }; // Dynamic state std::vector dynamicStates = { vk::DynamicState::eViewport, vk::DynamicState::eScissor, }; vk::PipelineDynamicStateCreateInfo dynamicState = { .dynamicStateCount = static_cast(dynamicStates.size()), .pDynamicStates = dynamicStates.data(), }; // No need to specify viewport and scissor because they will be specified dynamically vk::PipelineViewportStateCreateInfo viewportState = { .viewportCount = 1, .scissorCount = 1, }; // Rasterisation vk::PipelineRasterizationStateCreateInfo rasterizer = { .depthClampEnable = vk::False, .rasterizerDiscardEnable = vk::False, .polygonMode = vk::PolygonMode::eFill, .cullMode = vk::CullModeFlagBits::eBack, .frontFace = vk::FrontFace::eCounterClockwise, .depthBiasEnable = vk::False, .depthBiasSlopeFactor = 1.0f, .lineWidth = 1.0f }; // Multisampling vk::PipelineMultisampleStateCreateInfo multisampling = { .rasterizationSamples = vk::SampleCountFlagBits::e1, .sampleShadingEnable = vk::False, }; // Color blending vk::PipelineColorBlendAttachmentState colorBlendAttachment = { .blendEnable = vk::False, .colorWriteMask = vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG | vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA, }; vk::PipelineColorBlendStateCreateInfo colorBlending = { .logicOpEnable = vk::False, .logicOp = vk::LogicOp::eCopy, .attachmentCount = 1, .pAttachments = &colorBlendAttachment, }; // Pipeline layout vk::PipelineLayoutCreateInfo pipelineLayoutInfo = { .setLayoutCount = 1, .pSetLayouts = &*descriptorSetLayout, .pushConstantRangeCount = 0, }; pipelineLayout = vk::raii::PipelineLayout(device, pipelineLayoutInfo); // Dynamic rendering pipeline vk::PipelineRenderingCreateInfo pipelineRenderingCreateInfo = { .colorAttachmentCount = 1, .pColorAttachmentFormats = &swapChainImageFormat, }; vk::GraphicsPipelineCreateInfo pipelineInfo = { .pNext = &pipelineRenderingCreateInfo, .stageCount = 2, .pStages = shaderStages, .pVertexInputState = &vertexInputInfo, .pInputAssemblyState = &inputAssembly, .pViewportState = &viewportState, .pRasterizationState = &rasterizer, .pMultisampleState = &multisampling, .pColorBlendState = &colorBlending, .pDynamicState = &dynamicState, .layout = pipelineLayout, .renderPass = nullptr, }; // Create pipeline graphicsPipeline = vk::raii::Pipeline(device, nullptr, pipelineInfo); } void createCommandPool() { vk::CommandPoolCreateInfo poolInfo = { .flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer, .queueFamilyIndex = graphicsQueueIndex, }; commandPool = vk::raii:: CommandPool(device, poolInfo); } void createTextureImage() { int texWidth, texHeight, texChannels; stbi_uc* pixels = stbi_load("textures/texture.jpg", &texWidth, &texHeight, &texChannels, STBI_rgb_alpha); if (!pixels) { throw std::runtime_error("failed to load texture image!"); } vk::DeviceSize imageSize = texWidth * texHeight * 4; vk::raii::Buffer stagingBuffer({}); vk::raii::DeviceMemory stagingBufferMemory({}); createBuffer(imageSize, vk::BufferUsageFlagBits::eTransferSrc, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostVisible, stagingBuffer, stagingBufferMemory); void *data = stagingBufferMemory.mapMemory(0, imageSize); memcpy(data, pixels, imageSize); stagingBufferMemory.unmapMemory(); stbi_image_free(pixels); createImage(texWidth, texHeight, vk::Format::eR8G8B8A8Srgb, vk::ImageTiling::eOptimal, vk::ImageUsageFlagBits::eTransferDst | vk::ImageUsageFlagBits::eSampled, vk::MemoryPropertyFlagBits::eDeviceLocal, textureImage, textureImageMemory); // Transition layout to copy data transitionImageLayout(textureImage, vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal); copyBufferToImage(stagingBuffer, textureImage, static_cast(texWidth), static_cast(texHeight)); // Transition layout to enable sampling transitionImageLayout(textureImage, vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::eShaderReadOnlyOptimal); } void createTextureImageView() { textureImageView = createImageView(textureImage, vk::Format::eR8G8B8A8Srgb); } void createImage(uint32_t width, uint32_t height, vk::Format format, vk::ImageTiling tiling, vk::ImageUsageFlags usage, vk::MemoryPropertyFlags properties, vk::raii::Image& image, vk::raii::DeviceMemory& imageMemory) { vk::ImageCreateInfo imageInfo { .imageType = vk::ImageType::e2D, .format = format, .extent = {width, height, 1}, .mipLevels = 1, .arrayLayers = 1, .samples = vk::SampleCountFlagBits::e1, .tiling = tiling, .usage = usage, .sharingMode = vk::SharingMode::eExclusive, }; image = vk::raii::Image(device, imageInfo); vk::MemoryRequirements memRequirements = image.getMemoryRequirements(); vk::MemoryAllocateInfo allocInfo { .allocationSize = memRequirements.size, .memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties) }; imageMemory = vk::raii::DeviceMemory(device, allocInfo); image.bindMemory(*imageMemory, 0); } vk::raii::ImageView createImageView(vk::raii::Image &image, vk::Format format) { vk::ImageViewCreateInfo imageViewCreateInfo{ .image = image, .viewType = vk::ImageViewType::e2D, .format = format, .subresourceRange = { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 } }; return vk::raii::ImageView(device, imageViewCreateInfo); } void copyBufferToImage(const vk::raii::Buffer& buffer, vk::raii::Image& image, uint32_t width, uint32_t height) { vk::raii::CommandBuffer commandBuffer = beginSingleTimeCommands(); vk::BufferImageCopy region { .bufferOffset = 0, .bufferRowLength = 0, .bufferImageHeight = 0, .imageSubresource = { vk::ImageAspectFlagBits::eColor, 0, 0, 1 }, .imageOffset = { 0, 0, 0 }, .imageExtent = { width, height, 1 } }; commandBuffer.copyBufferToImage(buffer, image, vk::ImageLayout::eTransferDstOptimal, {region}); endSingleTimeCommands(commandBuffer); } void createTextureSampler() { vk::PhysicalDeviceProperties properties = physicalDevice.getProperties(); vk::SamplerCreateInfo samplerInfo = { .magFilter = vk::Filter::eLinear, .minFilter = vk::Filter::eLinear, .mipmapMode = vk::SamplerMipmapMode::eLinear, .addressModeU = vk::SamplerAddressMode::eRepeat, .addressModeV = vk::SamplerAddressMode::eRepeat, .addressModeW = vk::SamplerAddressMode::eRepeat, .anisotropyEnable = vk::True, .maxAnisotropy = properties.limits.maxSamplerAnisotropy, .compareEnable = vk::False, .compareOp = vk::CompareOp::eAlways, .borderColor = vk::BorderColor::eIntOpaqueBlack, .unnormalizedCoordinates = vk::False, }; textureImageSampler = vk::raii::Sampler(device, samplerInfo); } void createVertexBuffer() { vk::DeviceSize bufferSize = sizeof(vertices[0]) * vertices.size(); vk::raii::Buffer stagingBuffer = nullptr; vk::raii::DeviceMemory stagingBufferMemory = nullptr; // Create staging buffer visible to host (CPU) createBuffer( bufferSize, vk::BufferUsageFlagBits::eTransferSrc, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, stagingBuffer, stagingBufferMemory ); void *data = stagingBufferMemory.mapMemory(0, bufferSize); memcpy(data, vertices.data(), (size_t)bufferSize); stagingBufferMemory.unmapMemory(); createBuffer( bufferSize, vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst, vk::MemoryPropertyFlagBits::eDeviceLocal, vertexBuffer, vertexBufferMemory ); copyBuffer(stagingBuffer, vertexBuffer, bufferSize); } void createIndexBuffer() { vk::DeviceSize bufferSize = sizeof(indices[0]) * indices.size(); vk::raii::Buffer stagingBuffer = nullptr; vk::raii::DeviceMemory stagingBufferMemory = nullptr; // Create staging buffer visible to host (CPU) createBuffer( bufferSize, vk::BufferUsageFlagBits::eTransferSrc, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, stagingBuffer, stagingBufferMemory ); void *data = stagingBufferMemory.mapMemory(0, bufferSize); memcpy(data, indices.data(), (size_t)bufferSize); stagingBufferMemory.unmapMemory(); createBuffer( bufferSize, vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst, vk::MemoryPropertyFlagBits::eDeviceLocal, indexBuffer, indexBufferMemory ); copyBuffer(stagingBuffer, indexBuffer, bufferSize); } void createUniformBuffers() { uniformBuffers.clear(); uniformBuffersMemory.clear(); unifromBuffersMapped.clear(); for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; ++i) { vk::DeviceSize bufferSize = sizeof(UniformBufferObject); vk::raii::Buffer buffer({}); vk::raii::DeviceMemory bufferMem({}); createBuffer(bufferSize, vk::BufferUsageFlagBits::eUniformBuffer, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, buffer, bufferMem); uniformBuffers.emplace_back(std::move(buffer)); uniformBuffersMemory.emplace_back(std::move(bufferMem)); unifromBuffersMapped.emplace_back(uniformBuffersMemory[i].mapMemory(0, bufferSize)); } } void createDescriptorPool() { vk::DescriptorPoolSize poolSize(vk::DescriptorType::eUniformBuffer, MAX_FRAMES_IN_FLIGHT); vk::DescriptorPoolCreateInfo poolInfo = { .flags = vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, .maxSets = MAX_FRAMES_IN_FLIGHT, .poolSizeCount = 1, .pPoolSizes = &poolSize, }; descriptorPool = vk::raii::DescriptorPool(device, poolInfo); } void createDescriptorSets() { std::vector layouts(MAX_FRAMES_IN_FLIGHT, *descriptorSetLayout); vk::DescriptorSetAllocateInfo allocInfo { .descriptorPool = descriptorPool, .descriptorSetCount = static_cast(layouts.size()), .pSetLayouts = layouts.data(), }; descriptorSets.clear(); descriptorSets = device.allocateDescriptorSets(allocInfo); for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; ++i) { vk::DescriptorBufferInfo bufferInfo { .buffer = uniformBuffers[i], .offset = 0, .range = sizeof(UniformBufferObject), }; vk::WriteDescriptorSet descriptorWrite = { .dstSet = descriptorSets[i], .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = vk::DescriptorType::eUniformBuffer, .pBufferInfo = &bufferInfo, }; device.updateDescriptorSets(descriptorWrite, {}); } } void createCommandBuffers() { commandBuffers.clear(); vk::CommandBufferAllocateInfo allocInfo = { .commandPool = commandPool, .level = vk::CommandBufferLevel::ePrimary, .commandBufferCount = MAX_FRAMES_IN_FLIGHT, }; commandBuffers = vk::raii::CommandBuffers(device, allocInfo); } void createSyncObjects() { assert(presentCompleteSemaphores.empty() && renderFinishedSemaphores.empty() && drawFences.empty()); for (size_t i = 0; i < swapChainImages.size(); ++i) { renderFinishedSemaphores.emplace_back(device, vk::SemaphoreCreateInfo()); } for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; ++i) { presentCompleteSemaphores.emplace_back(device, vk::SemaphoreCreateInfo()); drawFences.emplace_back(device, vk::FenceCreateInfo{ .flags = vk::FenceCreateFlagBits::eSignaled }); } } void updateUniformBuffer(uint32_t currentImage) { static auto startTime = std::chrono::high_resolution_clock::now(); auto currentTime = std::chrono::high_resolution_clock::now(); float time = std::chrono::duration(currentTime - startTime).count(); UniformBufferObject ubo{}; ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f)); ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)); ubo.proj = glm::perspective(glm::radians(45.0f), static_cast(swapChainExtent.width) / static_cast(swapChainExtent.height), 0.1f, 10.0f); ubo.proj[1][1] *= -1; memcpy(unifromBuffersMapped[currentImage], &ubo, sizeof(ubo)); } void recordCommandBuffer(uint32_t imageIndex) { auto &commandBuffer = commandBuffers[frameIndex]; // Begin recording the command buffer commandBuffer.begin({}); // Before starting rendering, transition the swapchain image to COLOR_ATTACHMENT_OPTIMAL transitionSwapChainImageLayout( imageIndex, vk::ImageLayout::eUndefined, vk::ImageLayout::eColorAttachmentOptimal, {}, // srcAccessMask (no need to wait for previous operations) vk::AccessFlagBits2::eColorAttachmentWrite, // dstAccessMask vk::PipelineStageFlagBits2::eColorAttachmentOutput, // srcStage vk::PipelineStageFlagBits2::eColorAttachmentOutput // dstStage ); vk::ClearValue clearColor = vk::ClearColorValue(0.0f, 0.0f, 0.0f, 1.0f); vk::RenderingAttachmentInfo attachmentInfo = { .imageView = swapChainImageViews[imageIndex], .imageLayout = vk::ImageLayout::eColorAttachmentOptimal, .loadOp = vk::AttachmentLoadOp::eClear, .storeOp = vk::AttachmentStoreOp::eStore, .clearValue = clearColor, }; vk::RenderingInfo renderingInfo = { .renderArea = { .offset = { 0, 0 }, .extent = swapChainExtent }, .layerCount = 1, .colorAttachmentCount = 1, .pColorAttachments = &attachmentInfo, }; commandBuffer.beginRendering(renderingInfo); commandBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline); commandBuffer.bindVertexBuffers(0, *vertexBuffer, {0}); commandBuffer.bindIndexBuffer(*indexBuffer, 0, vk::IndexType::eUint16); // Viewport and scissor are dynamic so we need to set them vk::Viewport viewport = { .x = 0.0f, .y = 0.0f, .width = static_cast(swapChainExtent.width), .height = static_cast(swapChainExtent.height), .minDepth = 0.0f, .maxDepth = 1.0f, }; commandBuffer.setViewport(0, viewport); commandBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), swapChainExtent)); commandBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, *descriptorSets[frameIndex], nullptr); // Issue the draw command commandBuffer.drawIndexed(indices.size(), 1, 0, 0, 0); commandBuffer.endRendering(); // After rendering, transition the swapchain image to PRESENT_SRC transitionSwapChainImageLayout( imageIndex, vk::ImageLayout::eColorAttachmentOptimal, vk::ImageLayout::ePresentSrcKHR, vk::AccessFlagBits2::eColorAttachmentWrite, // srcAccessMask {}, // dstAccessMask vk::PipelineStageFlagBits2::eColorAttachmentOutput, // srcStage vk::PipelineStageFlagBits2::eBottomOfPipe // dstStage ); // Finish recording the command buffer commandBuffer.end(); } void createBuffer( vk::DeviceSize size, vk::BufferUsageFlags usage, vk::MemoryPropertyFlags properties, vk::raii::Buffer &buffer, vk::raii::DeviceMemory &bufferMemory ) { vk::BufferCreateInfo bufferInfo = { .size = size, .usage = usage, .sharingMode = vk::SharingMode::eExclusive, }; buffer = vk::raii::Buffer(device, bufferInfo); vk::MemoryRequirements memRequirements = buffer.getMemoryRequirements(); vk::MemoryAllocateInfo memAllocateInfo = { .allocationSize = memRequirements.size, .memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties) }; bufferMemory = vk::raii::DeviceMemory(device, memAllocateInfo); buffer.bindMemory(bufferMemory, 0); } void copyBuffer(vk::raii::Buffer &srcBuffer, vk::raii::Buffer &dstBuffer, vk::DeviceSize size) { vk::raii::CommandBuffer commandCopyBuffer = beginSingleTimeCommands(); commandCopyBuffer.copyBuffer(*srcBuffer, *dstBuffer, vk::BufferCopy(0, 0, size)); endSingleTimeCommands(commandCopyBuffer); } vk::raii::CommandBuffer beginSingleTimeCommands() { vk::CommandBufferAllocateInfo allocInfo { .commandPool = commandPool, .level = vk::CommandBufferLevel::ePrimary, .commandBufferCount = 1 }; vk::raii::CommandBuffer commandBuffer = std::move(device.allocateCommandBuffers(allocInfo).front()); vk::CommandBufferBeginInfo beginInfo{ .flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit }; commandBuffer.begin(beginInfo); return commandBuffer; } void endSingleTimeCommands(vk::raii::CommandBuffer& commandBuffer) { commandBuffer.end(); vk::SubmitInfo submitInfo{ .commandBufferCount = 1, .pCommandBuffers = &*commandBuffer }; graphicsQueue.submit(submitInfo, nullptr); graphicsQueue.waitIdle(); } uint32_t findMemoryType(uint32_t typeFilter, vk::MemoryPropertyFlags properties) { vk::PhysicalDeviceMemoryProperties memProperties = physicalDevice.getMemoryProperties(); for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) { if ((typeFilter & (1 << i) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties)) { return i; } } throw std::runtime_error("failed to find suitable memory type!"); } void transitionImageLayout(const vk::raii::Image &image, vk::ImageLayout oldLayout, vk::ImageLayout newLayout) { vk::raii::CommandBuffer commandBuffer = beginSingleTimeCommands(); vk::ImageMemoryBarrier barrier{ .oldLayout = oldLayout, .newLayout = newLayout, .image = image, .subresourceRange = {vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1} }; vk::PipelineStageFlags sourceStage; vk::PipelineStageFlags destinationStage; if (oldLayout == vk::ImageLayout::eUndefined && newLayout == vk::ImageLayout::eTransferDstOptimal) { barrier.srcAccessMask = {}; barrier.dstAccessMask = vk::AccessFlagBits::eTransferWrite; sourceStage = vk::PipelineStageFlagBits::eTopOfPipe; destinationStage = vk::PipelineStageFlagBits::eTransfer; } else if (oldLayout == vk::ImageLayout::eTransferDstOptimal && newLayout == vk::ImageLayout::eShaderReadOnlyOptimal) { barrier.srcAccessMask = vk::AccessFlagBits::eTransferWrite; barrier.dstAccessMask = vk::AccessFlagBits::eShaderRead; sourceStage = vk::PipelineStageFlagBits::eTransfer; destinationStage = vk::PipelineStageFlagBits::eFragmentShader; } else { throw std::invalid_argument("unsupported layout transition!"); } commandBuffer.pipelineBarrier(sourceStage, destinationStage, {}, {}, nullptr, barrier); endSingleTimeCommands(commandBuffer); } void transitionSwapChainImageLayout( uint32_t imageIndex, vk::ImageLayout oldLayout, vk::ImageLayout newLayout, vk::AccessFlags2 srcAccessMask, vk::AccessFlags2 dstAccessMask, vk::PipelineStageFlags2 srcStageMask, vk::PipelineStageFlags2 dstStageMask ) { vk::ImageMemoryBarrier2 barrier = { .srcStageMask = srcStageMask, .srcAccessMask = srcAccessMask, .dstStageMask = dstStageMask, .dstAccessMask = dstAccessMask, .oldLayout = oldLayout, .newLayout = newLayout, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .image = swapChainImages[imageIndex], .subresourceRange = { .aspectMask = vk::ImageAspectFlagBits::eColor, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 } }; vk::DependencyInfo dependencyInfo = { .dependencyFlags = {}, .imageMemoryBarrierCount = 1, .pImageMemoryBarriers = &barrier }; commandBuffers[frameIndex].pipelineBarrier2(dependencyInfo); } void cleanupSwapChain() { swapChainImageViews.clear(); swapChain = nullptr; } void recreateSwapChain() { int width = 0, height = 0; glfwGetFramebufferSize(window, &width, &height); while (width == 0 || height == 0) { glfwGetFramebufferSize(window, &width, &height); glfwWaitEvents(); } device.waitIdle(); cleanupSwapChain(); createSwapChain(); createImageViews(); } [[nodiscard]] vk::raii::ShaderModule createShaderModule(const std::vector &code) const { vk::ShaderModuleCreateInfo createInfo { .codeSize = code.size() * sizeof(char), .pCode = reinterpret_cast(code.data()), }; return vk::raii::ShaderModule{device, createInfo}; } vk::SurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector& availableFormats) { for (const auto& availableFormat : availableFormats) { if (availableFormat.format == vk::Format::eB8G8R8A8Srgb && availableFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear) { return availableFormat; } } return availableFormats[0]; } vk::PresentModeKHR chooseSwapPresentMode(const std::vector& availablePresentModes) { for (const auto& availablePresentMode : availablePresentModes) { if (availablePresentMode == vk::PresentModeKHR::eMailbox) { return availablePresentMode; } } return vk::PresentModeKHR::eFifo; } vk::Extent2D chooseSwapExtent(const vk::SurfaceCapabilitiesKHR& capabilities) { if (capabilities.currentExtent.width != std::numeric_limits::max()) { return capabilities.currentExtent; } int width, height; glfwGetFramebufferSize(window, &width, &height); return { std::clamp(width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width), std::clamp(height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height), }; } uint32_t findQueueFamilies(vk::raii::PhysicalDevice physicalDevice) { // find the index of the first queue family that supports graphics std::vector queueFamilyProperties = physicalDevice.getQueueFamilyProperties(); // get the first index into queueFamilyProperties which both supports graphics and present uint32_t queueIndex = ~0; for (uint32_t qfpIndex = 0; qfpIndex < queueFamilyProperties.size(); ++qfpIndex) { if ((queueFamilyProperties[qfpIndex].queueFlags & vk::QueueFlagBits::eGraphics) && physicalDevice.getSurfaceSupportKHR(qfpIndex, *surface)) { queueIndex = qfpIndex; break; } } if (queueIndex == ~0) { throw std::runtime_error("Could not find a queue for graphics and present -> terminating"); } return queueIndex; } uint32_t frameIndex = 0; bool framebufferResized = false; GLFWwindow *window; vk::raii::Context context; vk::raii::Instance instance = nullptr; vk::raii::PhysicalDevice physicalDevice = nullptr; uint32_t graphicsQueueIndex; vk::raii::Device device = nullptr; vk::raii::Queue graphicsQueue = nullptr; vk::raii::SurfaceKHR surface = nullptr; vk::raii::SwapchainKHR swapChain = nullptr; vk::SurfaceFormatKHR swapChainSurfaceFormat; vk::Extent2D swapChainExtent; vk::Format swapChainImageFormat = vk::Format::eUndefined; std::vector swapChainImages; std::vector swapChainImageViews; vk::raii::DescriptorSetLayout descriptorSetLayout = nullptr; vk::raii::DescriptorPool descriptorPool = nullptr; std::vector descriptorSets; vk::raii::PipelineLayout pipelineLayout = nullptr; vk::raii::Pipeline graphicsPipeline = nullptr; vk::raii::CommandPool commandPool = nullptr; vk::raii::Buffer vertexBuffer = nullptr; vk::raii::DeviceMemory vertexBufferMemory = nullptr; vk::raii::Buffer indexBuffer = nullptr; vk::raii::DeviceMemory indexBufferMemory = nullptr; vk::raii::Image textureImage = nullptr; vk::raii::DeviceMemory textureImageMemory = nullptr; vk::raii::ImageView textureImageView = nullptr; vk::raii::Sampler textureImageSampler = nullptr; std::vector uniformBuffers; std::vector uniformBuffersMemory; std::vector unifromBuffersMapped; std::vector commandBuffers; std::vector presentCompleteSemaphores; std::vector renderFinishedSemaphores; std::vector drawFences; }; int main() { HelloTriangleApplication app; try { app.run(); } catch (const std::exception &e) { std::cout << e.what() << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }