Files
vulkan-tutorial/14_command_buffers.cpp
2025-12-06 02:09:37 +00:00

580 lines
22 KiB
C++

#if defined(__INTELLISENSE__) || !defined(USE_CPP20_MODULES)
#include "vulkan/vulkan.hpp"
#include <vulkan/vulkan_raii.hpp>
#include <vulkan/vulkan_core.h>
#else
import vulkan_hpp;
#endif
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>
#include <ios>
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <stdexcept>
#include <cstdlib>
#include <cstdint>
#include <limits>
#include <algorithm>
constexpr uint32_t WIDTH = 800;
constexpr uint32_t HEIGHT = 600;
const std::vector<char const *> validationLayers = {
"VK_LAYER_KHRONOS_validation"
};
#ifdef NDEBUG
constexpr bool enableValidationLayers = false;
#else
constexpr bool enableValidationLayers = true;
#endif
static std::vector<char> readFile(const std::string &filename) {
std::ifstream file(filename, std::ios::ate | std::ios::binary);
if (!file.is_open()) {
throw std::runtime_error("failed to open file!");
}
std::vector<char> buffer(file.tellg());
file.seekg(0, std::ios::beg);
file.read(buffer.data(), static_cast<std::streamsize>(buffer.size()));
file.close();
return buffer;
}
class HelloTriangleApplication {
public:
void run() {
initWindow();
initVulkan();
mainLoop();
cleanup();
}
private:
void initWindow() {
glfwInit();
// Don't create an OpenGL context
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
}
void initVulkan() {
createInstance();
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSwapChain();
createImageViews();
createGraphicsPipeline();
createCommandPool();
createCommandBuffer();
}
void mainLoop() {
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
}
}
void cleanup() {
glfwDestroyWindow(window);
glfwTerminate();
}
void createInstance() {
constexpr vk::ApplicationInfo appInfo {
.pApplicationName = "Hello Triangle",
.applicationVersion = VK_MAKE_VERSION(1, 0, 0),
.pEngineName = "No Engine",
.engineVersion = VK_MAKE_VERSION(1, 0, 0),
.apiVersion = vk::ApiVersion14,
};
// Get the required layers
std::vector<char const*> requiredLayers;
if (enableValidationLayers) {
requiredLayers.assign(validationLayers.begin(), validationLayers.end());
}
// Check if the required layers are supported by the Vulkan implementation.
auto layerProperties = context.enumerateInstanceLayerProperties();
if (std::ranges::any_of(requiredLayers, [&layerProperties](auto const& requiredLayer) {
return std::ranges::none_of(layerProperties,
[requiredLayer](auto const& layerProperty)
{ return strcmp(layerProperty.layerName, requiredLayer) == 0; });
}))
{
throw std::runtime_error("One or more required layers are not supported!");
}
// Get the required instance extensions from GLFW.
uint32_t glfwExtensionCount = 0;
auto glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
// Check if the required GLFW extensions are supported by the Vulkan implementation.
auto extensionProperties = context.enumerateInstanceExtensionProperties();
for (uint32_t i = 0; i < glfwExtensionCount; ++i)
{
if (std::ranges::none_of(extensionProperties,
[glfwExtension = glfwExtensions[i]](auto const& extensionProperty)
{ return strcmp(extensionProperty.extensionName, glfwExtension) == 0; }))
{
throw std::runtime_error("Required GLFW extension not supported: " + std::string(glfwExtensions[i]));
}
}
vk::InstanceCreateInfo createInfo {
.pApplicationInfo = &appInfo,
.enabledLayerCount = static_cast<uint32_t>(requiredLayers.size()),
.ppEnabledLayerNames = requiredLayers.data(),
.enabledExtensionCount = glfwExtensionCount,
.ppEnabledExtensionNames = glfwExtensions,
};
instance = vk::raii::Instance(context, createInfo);
}
void createSurface() {
VkSurfaceKHR _surface;
if (glfwCreateWindowSurface(*instance, window, nullptr, &_surface) != 0) {
throw std::runtime_error("failed to create window surface!");
}
surface = vk::raii::SurfaceKHR(instance, _surface);
}
void pickPhysicalDevice() {
std::vector<const char*> deviceExtensions = {
vk::KHRSwapchainExtensionName,
vk::KHRSpirv14ExtensionName,
vk::KHRSynchronization2ExtensionName,
vk::KHRCreateRenderpass2ExtensionName,
};
auto devices = instance.enumeratePhysicalDevices();
if (devices.empty()) {
throw std::runtime_error("failed to find GPUs with Vulkan support!");
}
for (const auto &device : devices) {
auto deviceProperties = device.getProperties();
auto deviceFeatures = device.getFeatures();
auto queueFamilies = device.getQueueFamilyProperties();
auto extensions = device.enumerateDeviceExtensionProperties();
bool isSuitable = deviceProperties.apiVersion >= VK_API_VERSION_1_3;
bool extensionFound = true;
const vk::QueueFamilyProperties *qf = nullptr;
for (const auto &qfp : queueFamilies) {
if ((qfp.queueFlags & vk::QueueFlagBits::eGraphics) != static_cast<vk::QueueFlags>(0)) {
qf = &qfp;
break;
}
}
isSuitable = isSuitable && (qf != nullptr);
for (const auto &extension : deviceExtensions) {
auto extensionIter = std::ranges::find_if(extensions, [extension](auto const & ext) {return strcmp(ext.extensionName, extension) == 0;});
extensionFound = extensionFound && extensionIter != extensions.end();
}
isSuitable = isSuitable && extensionFound;
if (isSuitable) {
physicalDevice = device;
return;
}
throw std::runtime_error("failed to find a suitable GPU");
}
}
void createLogicalDevice() {
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
graphicsQueueIndex = findQueueFamilies(physicalDevice);
float queuePriority = 0.5f;
vk::DeviceQueueCreateInfo deviceQueueCreateInfo {
.queueFamilyIndex = graphicsQueueIndex,
.queueCount = 1,
.pQueuePriorities = &queuePriority,
};
// Create a chain of feature structures
vk::StructureChain<vk::PhysicalDeviceFeatures2,
vk::PhysicalDeviceVulkan13Features,
vk::PhysicalDeviceVulkan11Features,
vk::PhysicalDeviceExtendedDynamicStateFeaturesEXT> featureChain = {
{}, // vk::PhysicalDeviceFeatures2 (empty for now)
{.dynamicRendering = true }, // Enable dynamic rendering from Vulkan 1.3
{.shaderDrawParameters = true }, // Enable shader draw parameters from Vulkan 1.2
{.extendedDynamicState = true } // Enable extended dynamic state from the extension
};
std::vector<const char*> deviceExtensions = {
vk::KHRSwapchainExtensionName,
vk::KHRSpirv14ExtensionName,
vk::KHRSynchronization2ExtensionName,
vk::KHRCreateRenderpass2ExtensionName
};
vk::DeviceCreateInfo deviceCreateInfo {
.pNext = &featureChain.get<vk::PhysicalDeviceFeatures2>(),
.queueCreateInfoCount = 1,
.pQueueCreateInfos = &deviceQueueCreateInfo,
.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size()),
.ppEnabledExtensionNames = deviceExtensions.data(),
};
device = vk::raii::Device(physicalDevice, deviceCreateInfo);
graphicsQueue = vk::raii::Queue(device, graphicsQueueIndex, 0);
}
void createSwapChain() {
auto surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface);
swapChainSurfaceFormat = chooseSwapSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surface));
swapChainExtent = chooseSwapExtent(surfaceCapabilities);
auto minImageCount = std::max(3u, surfaceCapabilities.minImageCount);
minImageCount = (surfaceCapabilities.maxImageCount > 0 &&
minImageCount > surfaceCapabilities.maxImageCount) ?
surfaceCapabilities.maxImageCount :
minImageCount;
vk::SwapchainCreateInfoKHR swapChainCreateInfo {
.flags = vk::SwapchainCreateFlagsKHR(),
.surface = surface,
.minImageCount = minImageCount,
.imageFormat = swapChainSurfaceFormat.format,
.imageColorSpace = swapChainSurfaceFormat.colorSpace,
.imageExtent = swapChainExtent,
.imageArrayLayers = 1,
.imageUsage = vk::ImageUsageFlagBits::eColorAttachment,
.imageSharingMode = vk::SharingMode::eExclusive,
.preTransform = surfaceCapabilities.currentTransform,
.compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque,
.presentMode = chooseSwapPresentMode(physicalDevice.getSurfacePresentModesKHR(surface)),
.clipped = true,
.oldSwapchain = nullptr,
};
swapChain = vk::raii::SwapchainKHR(device, swapChainCreateInfo);
swapChainImages = swapChain.getImages();
swapChainImageFormat = swapChainSurfaceFormat.format;
}
void createImageViews() {
swapChainImageViews.clear();
vk::ImageViewCreateInfo imageViewCreateInfo{
.viewType = vk::ImageViewType::e2D,
.format = swapChainImageFormat,
.subresourceRange = { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 }
};
for (auto image : swapChainImages) {
imageViewCreateInfo.image = image;
swapChainImageViews.emplace_back(vk::raii::ImageView(device, imageViewCreateInfo));
}
}
void createGraphicsPipeline() {
vk::raii::ShaderModule shaderModule = createShaderModule(readFile("shaders/09_shader_base.spv"));
vk::PipelineShaderStageCreateInfo vertShaderStageInfo = {
.stage = vk::ShaderStageFlagBits::eVertex,
.module = shaderModule,
.pName = "vertMain",
};
vk::PipelineShaderStageCreateInfo fragShaderStageInfo = {
.stage = vk::ShaderStageFlagBits::eFragment,
.module = shaderModule,
.pName = "fragMain",
};
vk::PipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};
// Vertex input
vk::PipelineVertexInputStateCreateInfo vertexInputInfo;
// Input assembly
vk::PipelineInputAssemblyStateCreateInfo inputAssembly = {
.topology = vk::PrimitiveTopology::eTriangleList,
};
// Dynamic state
std::vector<vk::DynamicState> dynamicStates = {
vk::DynamicState::eViewport,
vk::DynamicState::eScissor,
};
vk::PipelineDynamicStateCreateInfo dynamicState = {
.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size()),
.pDynamicStates = dynamicStates.data(),
};
// No need to specify viewport and scissor because they will be specified dynamically
vk::PipelineViewportStateCreateInfo viewportState = {
.viewportCount = 1,
.scissorCount = 1,
};
// Rasterisation
vk::PipelineRasterizationStateCreateInfo rasterizer = {
.depthClampEnable = vk::False,
.rasterizerDiscardEnable = vk::False,
.polygonMode = vk::PolygonMode::eFill,
.cullMode = vk::CullModeFlagBits::eBack,
.frontFace = vk::FrontFace::eClockwise,
.depthBiasEnable = vk::False,
.depthBiasSlopeFactor = 1.0f,
.lineWidth = 1.0f
};
// Multisampling
vk::PipelineMultisampleStateCreateInfo multisampling = {
.rasterizationSamples = vk::SampleCountFlagBits::e1,
.sampleShadingEnable = vk::False,
};
// Color blending
vk::PipelineColorBlendAttachmentState colorBlendAttachment = {
.blendEnable = vk::False,
.colorWriteMask = vk::ColorComponentFlagBits::eR |
vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB |
vk::ColorComponentFlagBits::eA,
};
vk::PipelineColorBlendStateCreateInfo colorBlending = {
.logicOpEnable = vk::False,
.logicOp = vk::LogicOp::eCopy,
.attachmentCount = 1,
.pAttachments = &colorBlendAttachment,
};
// Pipeline layout
vk::PipelineLayoutCreateInfo pipelineLayoutInfo = {
.setLayoutCount = 0,
.pushConstantRangeCount = 0,
};
pipelineLayout = vk::raii::PipelineLayout(device, pipelineLayoutInfo);
// Dynamic rendering pipeline
vk::PipelineRenderingCreateInfo pipelineRenderingCreateInfo = {
.colorAttachmentCount = 1,
.pColorAttachmentFormats = &swapChainImageFormat,
};
vk::GraphicsPipelineCreateInfo pipelineInfo = {
.pNext = &pipelineRenderingCreateInfo,
.stageCount = 2,
.pStages = shaderStages,
.pVertexInputState = &vertexInputInfo,
.pInputAssemblyState = &inputAssembly,
.pViewportState = &viewportState,
.pRasterizationState = &rasterizer,
.pMultisampleState = &multisampling,
.pColorBlendState = &colorBlending,
.pDynamicState = &dynamicState,
.layout = pipelineLayout,
.renderPass = nullptr,
};
// Create pipeline
graphicsPipeline = vk::raii::Pipeline(device, nullptr, pipelineInfo);
}
void createCommandPool() {
vk::CommandPoolCreateInfo poolInfo = {
.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer,
.queueFamilyIndex = graphicsQueueIndex,
};
commandPool = vk::raii:: CommandPool(device, poolInfo);
}
void createCommandBuffer() {
vk::CommandBufferAllocateInfo allocInfo = {
.commandPool = commandPool,
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = 1,
};
commandBuffer = std::move(vk::raii::CommandBuffers(device, allocInfo).front());
}
void recordCommandBuffer(uint32_t imageIndex) {
// Begin recording the command buffer
commandBuffer.begin({});
// Before starting rendering, transition the swapchain image to COLOR_ATTACHMENT_OPTIMAL
transition_image_layout(
imageIndex,
vk::ImageLayout::eUndefined,
vk::ImageLayout::eColorAttachmentOptimal,
{}, // srcAccessMask (no need to wait for previous operations)
vk::AccessFlagBits2::eColorAttachmentWrite, // dstAccessMask
vk::PipelineStageFlagBits2::eColorAttachmentOutput, // srcStage
vk::PipelineStageFlagBits2::eColorAttachmentOutput // dstStage
);
vk::ClearValue clearColor = vk::ClearColorValue(0.0f, 0.0f, 0.0f, 1.0f);
vk::RenderingAttachmentInfo attachmentInfo = {
.imageView = swapChainImageViews[imageIndex],
.imageLayout = vk::ImageLayout::eColorAttachmentOptimal,
.loadOp = vk::AttachmentLoadOp::eClear,
.storeOp = vk::AttachmentStoreOp::eStore,
.clearValue = clearColor,
};
vk::RenderingInfo renderingInfo = {
.renderArea = { .offset = { 0, 0 }, .extent = swapChainExtent },
.layerCount = 1,
.colorAttachmentCount = 1,
.pColorAttachments = &attachmentInfo,
};
commandBuffer.beginRendering(renderingInfo);
commandBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline);
// Viewport and scissor are dynamic so we need to set them
vk::Viewport viewport = {
.x = 0.0f,
.y = 0.0f,
.width = static_cast<float>(swapChainExtent.width),
.height = static_cast<float>(swapChainExtent.height),
.minDepth = 0.0f,
.maxDepth = 1.0f,
};
commandBuffer.setViewport(0, viewport);
commandBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), swapChainExtent));
// Issue the draw command
commandBuffer.draw(3, 1, 0, 0);
commandBuffer.endRendering();
// After rendering, transition the swapchain image to PRESENT_SRC
transition_image_layout(
imageIndex,
vk::ImageLayout::eColorAttachmentOptimal,
vk::ImageLayout::ePresentSrcKHR,
vk::AccessFlagBits2::eColorAttachmentWrite, // srcAccessMask
{}, // dstAccessMask
vk::PipelineStageFlagBits2::eColorAttachmentOutput, // srcStage
vk::PipelineStageFlagBits2::eBottomOfPipe // dstStage
);
// Finish recording the command buffer
commandBuffer.end();
}
void transition_image_layout(
uint32_t imageIndex,
vk::ImageLayout oldLayout,
vk::ImageLayout newLayout,
vk::AccessFlags2 srcAccessMask,
vk::AccessFlags2 dstAccessMask,
vk::PipelineStageFlags2 srcStageMask,
vk::PipelineStageFlags2 dstStageMask
) {
vk::ImageMemoryBarrier2 barrier = {
.srcStageMask = srcStageMask,
.srcAccessMask = srcAccessMask,
.dstStageMask = dstStageMask,
.dstAccessMask = dstAccessMask,
.oldLayout = oldLayout,
.newLayout = newLayout,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = swapChainImages[imageIndex],
.subresourceRange = {
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1
}
};
vk::DependencyInfo dependencyInfo = {
.dependencyFlags = {},
.imageMemoryBarrierCount = 1,
.pImageMemoryBarriers = &barrier
};
commandBuffer.pipelineBarrier2(dependencyInfo);
}
[[nodiscard]] vk::raii::ShaderModule createShaderModule(const std::vector<char> &code) const {
vk::ShaderModuleCreateInfo createInfo {
.codeSize = code.size() * sizeof(char),
.pCode = reinterpret_cast<const uint32_t *>(code.data()),
};
return vk::raii::ShaderModule{device, createInfo};
}
vk::SurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<vk::SurfaceFormatKHR>& availableFormats) {
for (const auto& availableFormat : availableFormats) {
if (availableFormat.format == vk::Format::eB8G8R8A8Srgb && availableFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear) {
return availableFormat;
}
}
return availableFormats[0];
}
vk::PresentModeKHR chooseSwapPresentMode(const std::vector<vk::PresentModeKHR>& availablePresentModes) {
for (const auto& availablePresentMode : availablePresentModes) {
if (availablePresentMode == vk::PresentModeKHR::eMailbox) {
return availablePresentMode;
}
}
return vk::PresentModeKHR::eFifo;
}
vk::Extent2D chooseSwapExtent(const vk::SurfaceCapabilitiesKHR& capabilities) {
if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
return capabilities.currentExtent;
}
int width, height;
glfwGetFramebufferSize(window, &width, &height);
return {
std::clamp<uint32_t>(width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width),
std::clamp<uint32_t>(height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height),
};
}
uint32_t findQueueFamilies(vk::raii::PhysicalDevice physicalDevice) {
// find the index of the first queue family that supports graphics
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
// get the first index into queueFamilyProperties which both supports graphics and present
uint32_t queueIndex = ~0;
for (uint32_t qfpIndex = 0; qfpIndex < queueFamilyProperties.size(); ++qfpIndex) {
if ((queueFamilyProperties[qfpIndex].queueFlags & vk::QueueFlagBits::eGraphics) &&
physicalDevice.getSurfaceSupportKHR(qfpIndex, *surface)) {
queueIndex = qfpIndex;
break;
}
}
if (queueIndex == ~0) {
throw std::runtime_error("Could not find a queue for graphics and present -> terminating");
}
return queueIndex;
}
GLFWwindow *window;
vk::raii::Context context;
vk::raii::Instance instance = nullptr;
vk::raii::PhysicalDevice physicalDevice = nullptr;
uint32_t graphicsQueueIndex;
vk::raii::Device device = nullptr;
vk::raii::Queue graphicsQueue = nullptr;
vk::raii::SurfaceKHR surface = nullptr;
vk::raii::SwapchainKHR swapChain = nullptr;
vk::SurfaceFormatKHR swapChainSurfaceFormat;
vk::Extent2D swapChainExtent;
vk::Format swapChainImageFormat = vk::Format::eUndefined;
std::vector<vk::Image> swapChainImages;
std::vector<vk::raii::ImageView> swapChainImageViews;
vk::raii::PipelineLayout pipelineLayout = nullptr;
vk::raii::Pipeline graphicsPipeline = nullptr;
vk::raii::CommandPool commandPool = nullptr;
vk::raii::CommandBuffer commandBuffer = nullptr;
};
int main() {
HelloTriangleApplication app;
try {
app.run();
} catch (const std::exception &e) {
std::cout << e.what() << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}