Implement diffuse lighting

This commit is contained in:
Abdelrahman Said 2024-02-03 19:36:41 +00:00
parent f34e234609
commit 8b9ac28402

View File

@ -15,9 +15,28 @@ typedef struct {
colour_t colour; colour_t colour;
} sphere_t; } sphere_t;
typedef enum {
LIGHT_TYPE_POINT,
LIGHT_TYPE_DIRECTIONAL,
LIGHT_TYPE_AMBIENT,
COUNT_LIGHT_TYPE,
} light_type_t;
typedef struct {
light_type_t type;
f32 intensity;
union {
vec3f_t position;
vec3f_t direction;
};
} light_t;
typedef struct { typedef struct {
sphere_t *spheres; sphere_t *spheres;
u32 count; light_t *lights;
u32 spheres_count;
u32 lights_count;
} scene_t; } scene_t;
typedef struct { typedef struct {
@ -29,6 +48,9 @@ solutions_t ray_intersects_sphere(vec3f_t origin, vec3f_t direction,
sphere_t sphere); sphere_t sphere);
colour_t trace_ray(vec3f_t origin, vec3f_t direction, f32 t_min, f32 t_max, colour_t trace_ray(vec3f_t origin, vec3f_t direction, f32 t_min, f32 t_max,
const scene_t *scene, colour_t default_colour); const scene_t *scene, colour_t default_colour);
f32 compute_lighting(vec3f_t P, vec3f_t N, const scene_t *scene);
f32 light_diffuse(f32 light_intensity, vec3f_t light_direction,
vec3f_t surface_normal);
i32 main(i32 argc, char *argv[]) { i32 main(i32 argc, char *argv[]) {
colour_t bg = colour_t bg =
@ -67,11 +89,37 @@ i32 main(i32 argc, char *argv[]) {
(colour_t){ (colour_t){
.rgba.r = 171, .rgba.g = 52, .rgba.b = 40, .rgba.a = 255}, .rgba.r = 171, .rgba.g = 52, .rgba.b = 40, .rgba.a = 255},
}, },
(sphere_t){
.radius = 5000.0f,
.centre = (vec3f_t){.x = 0.0f, .y = -5001.0f, .z = 0.0f},
.colour =
(colour_t){
.rgba.r = 255, .rgba.g = 255, .rgba.b = 0, .rgba.a = 255},
},
};
light_t lights[] = {
(light_t){
.type = LIGHT_TYPE_AMBIENT,
.intensity = 0.2f,
},
(light_t){
.type = LIGHT_TYPE_POINT,
.intensity = 0.6f,
.position = (vec3f_t){.x = 2.0f, .y = 1.0f, .z = 0.0f},
},
(light_t){
.type = LIGHT_TYPE_DIRECTIONAL,
.intensity = 0.2f,
.direction = (vec3f_t){.x = 1.0f, .y = 4.0f, .z = 4.0f},
},
}; };
scene_t scene = { scene_t scene = {
.spheres = spheres, .spheres = spheres,
.count = ARR_LEN(spheres), .lights = lights,
.spheres_count = ARR_LEN(spheres),
.lights_count = ARR_LEN(lights),
}; };
i32 w_min = ((i32)window.half_width) * -1; i32 w_min = ((i32)window.half_width) * -1;
@ -131,7 +179,7 @@ colour_t trace_ray(vec3f_t origin, vec3f_t direction, f32 t_min, f32 t_max,
f32 closest_t = INFINITY; f32 closest_t = INFINITY;
sphere_t *closest_sphere = NULL; sphere_t *closest_sphere = NULL;
for (u32 i = 0; i < scene->count; ++i) { for (u32 i = 0; i < scene->spheres_count; ++i) {
solutions_t solutions = solutions_t solutions =
ray_intersects_sphere(origin, direction, scene->spheres[i]); ray_intersects_sphere(origin, direction, scene->spheres[i]);
@ -152,5 +200,63 @@ colour_t trace_ray(vec3f_t origin, vec3f_t direction, f32 t_min, f32 t_max,
return default_colour; return default_colour;
} }
return closest_sphere->colour; vec3f_t P =
vec_add(vec3f_t, origin, vec_mul_num(vec3f_t, direction, closest_t));
vec3f_t N = vec_sub(vec3f_t, P, closest_sphere->centre);
N = vec_div_num(vec3f_t, N, vec_magnitude(vec3f_t, N));
f32 light = compute_lighting(P, N, scene);
return (colour_t){.rgba.r = closest_sphere->colour.rgba.r * light,
.rgba.g = closest_sphere->colour.rgba.g * light,
.rgba.b = closest_sphere->colour.rgba.b * light,
.rgba.a = closest_sphere->colour.rgba.a};
}
f32 compute_lighting(vec3f_t P, vec3f_t N, const scene_t *scene) {
f32 I = 0.0f;
light_t light = {0};
for (u32 i = 0; i < scene->lights_count; ++i) {
light = scene->lights[i];
if (light.type == LIGHT_TYPE_AMBIENT) {
I += light.intensity;
} else {
vec3f_t L = {0};
switch (light.type) {
case LIGHT_TYPE_POINT:
L = vec_sub(vec3f_t, light.position, P);
break;
case LIGHT_TYPE_DIRECTIONAL:
L = light.direction;
break;
default:
break;
}
I += light_diffuse(light.intensity, L, N);
}
}
return I;
}
f32 light_diffuse(f32 light_intensity, vec3f_t light_direction,
vec3f_t surface_normal) {
f32 dot_product = vec_dot(vec3f_t, light_direction, surface_normal);
if (dot_product < 0.0f) {
return 0.0f;
}
f32 divisor = vec_magnitude(vec3f_t, light_direction) *
vec_magnitude(vec3f_t, surface_normal);
if (divisor == 0.0f) {
return 0.0f;
}
return light_intensity * dot_product / divisor;
} }