Implement shaders (#1)

Reviewed-on: #1

	* Start implementing shaders and move vector code to dedicated files
	* Extract shader into its own header
	* Ensure pixel coordinates are within bounds
	* Refactor shader code and implement fragment shaders
	* Create shaders
	* Reorganise code
Co-authored-by: Abdelrahman <said.abdelrahman89@gmail.com>
Co-committed-by: Abdelrahman <said.abdelrahman89@gmail.com>
This commit is contained in:
Abdelrahman Said 2024-08-18 14:28:09 +00:00 committed by Abdelrahman Said
parent 3bbab3f624
commit 50b8c6dd0a
19 changed files with 804 additions and 567 deletions

View File

@ -3,9 +3,11 @@
CC=clang
WAPP_INCLUDE="$(find intern/wapp/src -type d | xargs -I{} echo -n "-I{} ")"
WAPP_SRC="$(find intern/wapp/src -type f -name "*.c" | xargs -I{} echo -n "{} ")"
CFLAGS="-g -Isrc $WAPP_INCLUDE"
TINYRENDER_INCLUDE="$(find src -type d | xargs -I{} echo -n "-I{} ")"
TINYRENDER_SRC="$(find src -type f -name "*.c" | xargs -I{} echo -n "{} ")"
CFLAGS="-g $TINYRENDER_INCLUDE $WAPP_INCLUDE"
LIBS="-lm"
SRC="src/*.c $WAPP_SRC"
SRC="$TINYRENDER_SRC $WAPP_SRC"
OUT=tiny
(set -x ; $CC $CFLAGS $LIBS $SRC -o $OUT)

View File

@ -7,7 +7,7 @@
#include <stddef.h>
#include <string.h>
internal u64 calculate_pixel_index(Buffer *buffer, u64 x, u64 y, u64 base_size);
internal i64 calculate_pixel_index(Buffer *buffer, u64 x, u64 y, u64 base_size);
bool _init_buffer(Arena *arena, Buffer *buffer, u64 base_size) {
if (!arena || !buffer || buffer->width == 0 || buffer->height == 0) {
@ -21,12 +21,20 @@ bool _init_buffer(Arena *arena, Buffer *buffer, u64 base_size) {
}
u8 *_get_pixel(Buffer *buffer, u64 x, u64 y, u64 base_size) {
u64 idx = calculate_pixel_index(buffer, x, y, base_size);
i64 idx = calculate_pixel_index(buffer, x, y, base_size);
if (idx == -1) {
idx = 0;
}
return ((u8 *)(buffer->buf)) + idx;
}
void _set_pixel(Buffer *buffer, u64 x, u64 y, void *value, u64 base_size) {
u64 idx = calculate_pixel_index(buffer, x, y, base_size);
i64 idx = calculate_pixel_index(buffer, x, y, base_size);
if (idx == -1) {
return;
}
memcpy(((u8 *)(buffer->buf)) + idx, value, base_size);
return;
}
@ -75,7 +83,11 @@ void save_image(const Image *img, const char *filename) {
write_p7_image(img->width, img->height, (u8 *)(img->buf), filename);
}
internal u64 calculate_pixel_index(Buffer *buffer, u64 x, u64 y,
internal i64 calculate_pixel_index(Buffer *buffer, u64 x, u64 y,
u64 base_size) {
if (x < 0 || y < 0 || x >= buffer->width || y >= buffer->height) {
return -1;
}
return (y * buffer->width + x) * base_size;
}

View File

@ -2,6 +2,9 @@
#include "mem_arena.h"
#include "mem_utils.h"
#include "obj.h"
#include "shader.h"
#include "shaders.h"
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@ -10,6 +13,13 @@
#define SIZE 1200
#define RESOURCE(NAME) "resources/" NAME
extern ShaderID perspective_lit_textured_id;
extern ShaderID perspective_lit_coloured_id;
extern ShaderID perspective_albedo_id;
extern ShaderID orthographic_lit_textured_id;
extern ShaderID orthographic_lit_coloured_id;
extern ShaderID orthographic_albedo_id;
enum {
TINY_EXIT_SUCCESS,
TINY_EXIT_ARENA_INIT_FAILED,
@ -38,9 +48,11 @@ int main(void) {
return TINY_EXIT_MODEL_LOAD_FAILED;
}
load_shaders();
clear_buffer(&(render.img), &bg);
render_model(&obj, &render, teal, RENDER_TYPE_SHADED, COLOUR_TYPE_FIXED,
PROJECTION_TYPE_PERSPECTIVE);
render_model(&obj, &render, perspective_lit_textured_id, RENDER_TYPE_SHADED,
teal);
save_image(&(render.img), "result.pam");
wapp_mem_arena_destroy(&arena);

486
src/obj.c
View File

@ -1,486 +0,0 @@
#include "obj.h"
#include "aliases.h"
#include "img.h"
#include "mem_arena.h"
#include "pam.h"
#include "typed_list.h"
#include "utils.h"
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define TRIANGLE_VERTICES 3
#define DEPTH_MAX 255
#define V2(T, ELEM_T, X0, Y0, X1, Y1) \
((T){(ELEM_T)X1 - (ELEM_T)X0, (ELEM_T)Y1 - (ELEM_T)Y0})
#define V3(T, ELEM_T, X0, Y0, Z0, X1, Y1, Z1) \
((T){(ELEM_T)X1 - (ELEM_T)X0, (ELEM_T)Y1 - (ELEM_T)Y0, \
(ELEM_T)Z1 - (ELEM_T)Z0})
#define dot_v2(V1, V2) ((f32)V1.x * (f32)V2.x + (f32)V1.y * (f32)V2.y)
#define dot_v3(V1, V2) \
((f32)V1.x * (f32)V2.x + (f32)V1.y * (f32)V2.y + (f32)V1.z * (f32)V2.z)
#define magnitude_v3(V) (sqrtf(dot_v3(V, V)))
#define normalise_v3(V) \
do { \
f32 magnitude = magnitude_v3(V); \
V.x /= magnitude; \
V.y /= magnitude; \
V.z /= magnitude; \
} while (0)
#define cross_product(V1, V2) \
((V3f){ \
.x = V1.y * V2.z - V1.z * V2.y, \
.y = V1.z * V2.x - V1.x * V2.z, \
.z = V1.x * V2.y - V1.y * V2.x, \
})
#define mat4x4_identity \
((M4x4f){ \
.row0 = {1.0f, 0.0f, 0.0f, 0.0f}, \
.row1 = {0.0f, 1.0f, 0.0f, 0.0f}, \
.row2 = {0.0f, 0.0f, 1.0f, 0.0f}, \
.row3 = {0.0f, 0.0f, 0.0f, 1.0f}, \
})
#define mat4x4_mul(MAT1, MAT2) \
((M4x4f){ \
.row0.x = MAT1.row0.x * MAT2.row0.x + MAT1.row0.y * MAT2.row1.x + \
MAT1.row0.z * MAT2.row2.x + MAT1.row0.w * MAT2.row3.x, \
.row0.y = MAT1.row0.x * MAT2.row0.y + MAT1.row0.y * MAT2.row1.y + \
MAT1.row0.z * MAT2.row2.y + MAT1.row0.w * MAT2.row3.y, \
.row0.z = MAT1.row0.x * MAT2.row0.z + MAT1.row0.y * MAT2.row1.z + \
MAT1.row0.z * MAT2.row2.z + MAT1.row0.w * MAT2.row3.z, \
.row0.w = MAT1.row0.x * MAT2.row0.w + MAT1.row0.y * MAT2.row1.w + \
MAT1.row0.z * MAT2.row2.w + MAT1.row0.w * MAT2.row3.w, \
.row1.x = MAT1.row1.x * MAT2.row0.x + MAT1.row1.y * MAT2.row1.x + \
MAT1.row1.z * MAT2.row2.x + MAT1.row1.w * MAT2.row3.x, \
.row1.y = MAT1.row1.x * MAT2.row0.y + MAT1.row1.y * MAT2.row1.y + \
MAT1.row1.z * MAT2.row2.y + MAT1.row1.w * MAT2.row3.y, \
.row1.z = MAT1.row1.x * MAT2.row0.z + MAT1.row1.y * MAT2.row1.z + \
MAT1.row1.z * MAT2.row2.z + MAT1.row1.w * MAT2.row3.z, \
.row1.w = MAT1.row1.x * MAT2.row0.w + MAT1.row1.y * MAT2.row1.w + \
MAT1.row1.z * MAT2.row2.w + MAT1.row1.w * MAT2.row3.w, \
.row2.x = MAT1.row2.x * MAT2.row0.x + MAT1.row2.y * MAT2.row1.x + \
MAT1.row2.z * MAT2.row2.x + MAT1.row2.w * MAT2.row3.x, \
.row2.y = MAT1.row2.x * MAT2.row0.y + MAT1.row2.y * MAT2.row1.y + \
MAT1.row2.z * MAT2.row2.y + MAT1.row2.w * MAT2.row3.y, \
.row2.z = MAT1.row2.x * MAT2.row0.z + MAT1.row2.y * MAT2.row1.z + \
MAT1.row2.z * MAT2.row2.z + MAT1.row2.w * MAT2.row3.z, \
.row2.w = MAT1.row2.x * MAT2.row0.w + MAT1.row2.y * MAT2.row1.w + \
MAT1.row2.z * MAT2.row2.w + MAT1.row2.w * MAT2.row3.w, \
.row3.x = MAT1.row3.x * MAT2.row0.x + MAT1.row3.y * MAT2.row1.x + \
MAT1.row3.z * MAT2.row2.x + MAT1.row3.w * MAT2.row3.x, \
.row3.y = MAT1.row3.x * MAT2.row0.y + MAT1.row3.y * MAT2.row1.y + \
MAT1.row3.z * MAT2.row2.y + MAT1.row3.w * MAT2.row3.y, \
.row3.z = MAT1.row3.x * MAT2.row0.z + MAT1.row3.y * MAT2.row1.z + \
MAT1.row3.z * MAT2.row2.z + MAT1.row3.w * MAT2.row3.z, \
.row3.w = MAT1.row3.x * MAT2.row0.w + MAT1.row3.y * MAT2.row1.w + \
MAT1.row3.z * MAT2.row2.w + MAT1.row3.w * MAT2.row3.w, \
})
#define mat4x4_mul_vec4(MAT, V) \
((V4f){ \
.x = MAT.row0.x * V.x + MAT.row0.y * V.y + MAT.row0.z * V.z + \
MAT.row0.w * V.w, \
.y = MAT.row1.x * V.x + MAT.row1.y * V.y + MAT.row1.z * V.z + \
MAT.row1.w * V.w, \
.z = MAT.row2.x * V.x + MAT.row2.y * V.y + MAT.row2.z * V.z + \
MAT.row2.w * V.w, \
.w = MAT.row3.x * V.x + MAT.row3.y * V.y + MAT.row3.z * V.z + \
MAT.row3.w * V.w, \
})
#define project_vec4(V) ((V3f){.x = V.x / V.w, .y = V.y / V.w, .z = V.z / V.w})
typedef struct triangle_bbox TriangleBBox;
struct triangle_bbox {
u64 x0;
u64 y0;
u64 x1;
u64 y1;
};
internal void render_triangle(const Triangle *triangle, const Model *model,
Render *render, Colour colour, RenderType type,
ProjectionType projection, M4x4f mv);
internal void fill_triangle(Render *render, V3f vertices[TRIANGLE_VERTICES],
V3f normals[TRIANGLE_VERTICES],
V2f coordinates[TRIANGLE_VERTICES], Colour colour,
Image *texture, RenderType type);
internal M4x4f lookat(V3f eye, V3f target, V3f up);
internal M4x4f viewport(f32 x, f32 y, u64 w, u64 h);
internal M4x4f projection(f32 coeff);
internal TriangleBBox get_triangle_bbox(const Image *img,
V3f vertices[TRIANGLE_VERTICES]);
internal V3f get_barycentric_coords(f32 d00, f32 d01, f32 d11, f32 denom,
const V2i *ab, const V2i *ac,
const V2i *ap);
internal V3f get_viewport_vertex(const V3f *vertex, const Image *img);
V3f g_light_dir = {0.0f, 0.0f, 1.0f};
V3f g_eye = {0.2f, 0.1f, 0.75f};
V3f g_target = {0};
V3f g_up = {0.0f, 1.0f, 0.0f};
M4x4f g_cam_matrix = mat4x4_identity;
Model load_obj_file(Arena *arena, const char *filename, const char *texture) {
if (!arena) {
return INVALID_MODEL;
}
FILE *fp = fopen(filename, "r");
if (!fp) {
return INVALID_MODEL;
}
Model model = (Model){
.vertices = list_create(V3f, arena),
.normals = list_create(V3f, arena),
.texture_coordinates = list_create(V2f, arena),
.triangles = list_create(Triangle, arena),
};
if (!(model.vertices) || !(model.normals) || !(model.texture_coordinates) ||
!(model.triangles)) {
return INVALID_MODEL;
}
char line[8192];
char identifier[8];
V3f vertex;
V3f normal;
V2f coord;
Triangle triangle;
f32 vx, vy, vz;
f32 nx, ny, nz;
f32 u, v;
u64 fp0, fp1, fp2;
u64 vn0, vn1, vn2;
u64 tx0, tx1, tx2;
while (fgets(line, 8191, fp) != NULL) {
sscanf(line, "%s", identifier);
if (strncmp(identifier, "v", 8) == 0) {
sscanf(line + 2, "%f %f %f", &vx, &vy, &vz);
vertex.x = vx;
vertex.y = vy;
vertex.z = vz;
list_append(V3f, arena, model.vertices, vertex);
} else if (strncmp(identifier, "vn", 8) == 0) {
sscanf(line + 2, "%f %f %f", &nx, &ny, &nz);
normal.x = nx;
normal.y = ny;
normal.z = nz;
list_append(V3f, arena, model.normals, normal);
} else if (strncmp(identifier, "vt", 8) == 0) {
sscanf(line + 2, "%f %f", &u, &v);
coord.u = u;
coord.v = v;
list_append(V2f, arena, model.texture_coordinates, coord);
} else if (strncmp(identifier, "f", 8) == 0) {
sscanf(line + 2, "%lu/%lu/%lu %lu/%lu/%lu %lu/%lu/%lu", &fp0, &tx0, &vn0,
&fp1, &tx1, &vn1, &fp2, &tx2, &vn2);
// OBJ indices start from 1
triangle.p0 = fp0 - 1;
triangle.p1 = fp1 - 1;
triangle.p2 = fp2 - 1;
triangle.n0 = vn0 - 1;
triangle.n1 = vn1 - 1;
triangle.n2 = vn2 - 1;
triangle.tx0 = tx0 - 1;
triangle.tx1 = tx1 - 1;
triangle.tx2 = tx2 - 1;
list_append(Triangle, arena, model.triangles, triangle);
}
}
if (texture) {
model.texture = load_p6_image(arena, texture);
}
return model;
}
bool init_render(Arena *arena, Render *render, u64 width, u64 height) {
render->img = (Image){.width = width, .height = height};
if (!init_buffer(arena, &(render->img))) {
return false;
}
render->depth = (Depth){.width = width, .height = height};
if (!init_buffer(arena, &(render->depth))) {
return false;
}
f32 inf = -INFINITY;
clear_buffer(&(render->depth), &inf);
return true;
}
void render_model(const Model *model, Render *render, Colour colour,
RenderType type, ColourType colour_type,
ProjectionType projection_type) {
Triangle triangle;
M4x4f model_view = lookat(g_eye, g_target, g_up);
// Calculate projection matrix
V3f cam = V3(V3f, f32, g_target.x, g_target.y, g_target.z, g_eye.x, g_eye.y,
g_eye.z);
normalise_v3(cam);
f32 coeff = -1.0f / magnitude_v3(cam) * 0.5f;
g_cam_matrix = projection(coeff);
for (u64 i = 0; i < model->triangles->count; ++i) {
triangle = list_get(model->triangles, i);
if (colour_type == COLOUR_TYPE_RANDOM) {
colour = (Colour){.r = rand() % UINT8_MAX,
.g = rand() % UINT8_MAX,
.b = rand() % UINT8_MAX,
.a = 255};
}
render_triangle(&triangle, model, render, colour, type, projection_type,
model_view);
}
}
internal void render_triangle(const Triangle *triangle, const Model *model,
Render *render, Colour colour, RenderType type,
ProjectionType projection_type, M4x4f mv) {
Image *img = &(render->img);
V3f vertices[TRIANGLE_VERTICES] = {
list_get(model->vertices, triangle->p0),
list_get(model->vertices, triangle->p1),
list_get(model->vertices, triangle->p2),
};
V3f normals[TRIANGLE_VERTICES] = {
list_get(model->normals, triangle->n0),
list_get(model->normals, triangle->n1),
list_get(model->normals, triangle->n2),
};
V2f coordinates[TRIANGLE_VERTICES] = {
list_get(model->texture_coordinates, triangle->tx0),
list_get(model->texture_coordinates, triangle->tx1),
list_get(model->texture_coordinates, triangle->tx2),
};
// Camera
for (u64 i = 0; i < TRIANGLE_VERTICES; ++i) {
V4f vertex;
vertex = (V4f){
.x = vertices[i].x,
.y = vertices[i].y,
.z = vertices[i].z,
.w = 1.0f,
};
vertex = mat4x4_mul_vec4(mv, vertex);
vertices[i] = project_vec4(vertex);
}
// Basic perspective projection
if (projection_type == PROJECTION_TYPE_PERSPECTIVE) {
V4f vertex;
for (u64 i = 0; i < TRIANGLE_VERTICES; ++i) {
vertex = (V4f){
.x = vertices[i].x,
.y = vertices[i].y,
.z = vertices[i].z,
.w = 1.0f,
};
vertex = mat4x4_mul_vec4(g_cam_matrix, vertex);
vertices[i] = project_vec4(vertex);
}
}
if (type == RENDER_TYPE_WIREFRAME) {
V3f v0, v1;
u64 x0, y0, x1, y1;
V3f vp0, vp1;
for (u64 i = 0; i < TRIANGLE_VERTICES; ++i) {
v0 = vertices[i];
v1 = vertices[(i + 1) % TRIANGLE_VERTICES];
vp0 = get_viewport_vertex(&v0, img);
vp1 = get_viewport_vertex(&v1, img);
draw_line(img, (u64)vp0.x, (u64)vp0.y, (u64)vp1.x, (u64)vp1.y, colour);
}
} else if (type == RENDER_TYPE_FILLED || type == RENDER_TYPE_SHADED) {
fill_triangle(render, vertices, normals, coordinates, colour,
model->texture, type);
}
}
internal void fill_triangle(Render *render, V3f vertices[TRIANGLE_VERTICES],
V3f normals[TRIANGLE_VERTICES],
V2f coordinates[TRIANGLE_VERTICES], Colour colour,
Image *texture, RenderType type) {
Image *img = &(render->img);
Depth *depth = &(render->depth);
TriangleBBox bbox = get_triangle_bbox(img, vertices);
V3f v0 = get_viewport_vertex(&vertices[0], img);
V3f v1 = get_viewport_vertex(&vertices[1], img);
V3f v2 = get_viewport_vertex(&vertices[2], img);
V2i ab = V2(V2i, i64, v0.x, v0.y, v1.x, v1.y);
V2i ac = V2(V2i, i64, v0.x, v0.y, v2.x, v2.y);
f32 d00 = dot_v2(ab, ab);
f32 d01 = dot_v2(ab, ac);
f32 d11 = dot_v2(ac, ac);
f32 denom = d00 * d11 - d01 * d01;
V2i ap;
V3f coords;
f32 z;
f32 zbuf;
f32 nx, ny, nz;
V3f normal;
f32 tx_u, tx_v;
u64 tx_x, tx_y;
f32 intensity = 1.0f;
for (u64 y = bbox.y0; y <= bbox.y1; ++y) {
for (u64 x = bbox.x0; x <= bbox.x1; ++x) {
ap = V2(V2i, i64, v0.x, v0.y, x, y);
coords = get_barycentric_coords(d00, d01, d11, denom, &ab, &ac, &ap);
if (coords.x < 0.0f || coords.y < 0.0f || coords.x + coords.y > 1.0f) {
continue;
}
z = 0.0f;
z += v0.z * coords.x + v1.z * coords.y + v2.z * coords.z;
zbuf = get_pixel(f32, &(render->depth), x, y);
if (z > zbuf) {
if (type == RENDER_TYPE_SHADED) {
nx = normals[0].x * coords.x + normals[1].x * coords.y +
normals[2].x * coords.z;
ny = normals[0].y * coords.x + normals[1].y * coords.y +
normals[2].y * coords.z;
nz = normals[0].z * coords.x + normals[1].z * coords.y +
normals[2].z * coords.z;
normal = (V3f){nx, ny, nz};
intensity = dot_v3(normal, g_light_dir);
}
if (intensity < 0.0f) {
intensity = 0.01f;
}
if (texture) {
tx_u = coordinates[0].u * coords.x + coordinates[1].u * coords.y +
coordinates[2].u * coords.z;
tx_v = coordinates[0].v * coords.x + coordinates[1].v * coords.y +
coordinates[2].v * coords.z;
tx_x = tx_u * texture->width;
tx_y = (1.0f - tx_v) * texture->height;
colour = get_pixel(Colour, texture, tx_x, tx_y);
}
colour.r *= intensity;
colour.g *= intensity;
colour.b *= intensity;
set_pixel(depth, x, y, &z);
set_pixel(img, x, y, &colour);
}
}
}
}
internal M4x4f lookat(V3f eye, V3f target, V3f up) {
V3f z = V3(V3f, f32, target.x, target.y, target.z, eye.x, eye.y, eye.z);
normalise_v3(z);
V3f x = cross_product(up, z);
normalise_v3(x);
V3f y = cross_product(z, x);
normalise_v3(y);
M4x4f rotation = mat4x4_identity;
rotation.row0.x = x.x;
rotation.row0.y = x.y;
rotation.row0.z = x.z;
rotation.row1.x = y.x;
rotation.row1.y = y.y;
rotation.row1.z = y.z;
rotation.row2.x = z.x;
rotation.row2.y = z.y;
rotation.row2.z = z.z;
M4x4f translation = mat4x4_identity;
translation.row0.w = -(eye.x);
translation.row1.w = -(eye.y);
translation.row2.w = -(eye.z);
return mat4x4_mul(rotation, translation);
}
internal M4x4f viewport(f32 x, f32 y, u64 w, u64 h) {
M4x4f output = mat4x4_identity;
f32 half_width = (f32)w * 0.5f;
f32 half_height = (f32)h * 0.5f;
f32 half_depth = (f32)DEPTH_MAX * 0.5f;
output.row0.x = half_width;
output.row0.w = x + half_width;
output.row1.y = half_height;
output.row1.w = y + half_height;
output.row2.z = output.row2.w = half_depth;
return output;
}
internal M4x4f projection(f32 coeff) {
// clang-format off
return (M4x4f){
.row0 = {1.0f, 0.0f, 0.0f, 0.0f},
.row1 = {0.0f, 1.0f, 0.0f, 0.0f},
.row2 = {0.0f, 0.0f, 1.0f, 0.0f},
.row3 = {0.0f, 0.0f, coeff, 1.0f},
};
// clang-format on
}
internal TriangleBBox get_triangle_bbox(const Image *img,
V3f vertices[TRIANGLE_VERTICES]) {
f32 x0 = min(vertices[0].x, min(vertices[1].x, vertices[2].x));
f32 x1 = max(vertices[0].x, max(vertices[1].x, vertices[2].x));
// NOTE (Abdelrahman): Because y is flipped, we use max for the minimum and
// min for the maximum
f32 y0 = max(vertices[0].y, max(vertices[1].y, vertices[2].y));
f32 y1 = min(vertices[0].y, min(vertices[1].y, vertices[2].y));
V3f minimum = get_viewport_vertex(&(V3f){x0, y0, 0.0f}, img);
V3f maximum = get_viewport_vertex(&(V3f){x1, y1, 0.0f}, img);
return (TriangleBBox){
.x0 = minimum.x,
.y0 = minimum.y,
.x1 = maximum.x,
.y1 = maximum.y,
};
}
internal V3f get_barycentric_coords(f32 d00, f32 d01, f32 d11, f32 denom,
const V2i *ab, const V2i *ac,
const V2i *ap) {
if (denom == 0.0f) {
return (V3f){-INFINITY, -INFINITY, -INFINITY};
}
f32 d20 = dot_v2((*ap), (*ab));
f32 d21 = dot_v2((*ap), (*ac));
f32 v = (d11 * d20 - d01 * d21) / denom;
f32 w = (d00 * d21 - d01 * d20) / denom;
f32 u = 1.0f - v - w;
return (V3f){v, w, u};
}
internal V3f get_viewport_vertex(const V3f *vertex, const Image *img) {
V4f vh = {.x = vertex->x, .y = 0.0f - vertex->y, .z = vertex->z, .w = 1.0f};
vh = mat4x4_mul_vec4(viewport(vh.x, vh.y, img->width, img->height), vh);
return project_vec4(vh);
}

294
src/obj/obj.c Normal file
View File

@ -0,0 +1,294 @@
#include "obj.h"
#include "aliases.h"
#include "img.h"
#include "mem_arena.h"
#include "pam.h"
#include "shader.h"
#include "typed_list.h"
#include "utils.h"
#include "vec.h"
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define TRIANGLE_VERTICES 3
typedef struct triangle_bbox TriangleBBox;
struct triangle_bbox {
u64 x0;
u64 y0;
u64 x1;
u64 y1;
};
internal void render_triangle(const Triangle *triangle, const Model *model,
ShaderID shader, Render *render,
RenderType render_type, Colour colour);
internal void fill_triangle(Render *render, ShaderID shader,
V3f vertices[TRIANGLE_VERTICES],
V3f normals[TRIANGLE_VERTICES],
V2f coordinates[TRIANGLE_VERTICES], Colour colour,
Image *texture, RenderType type);
internal TriangleBBox get_triangle_bbox(const Image *img,
V3f vertices[TRIANGLE_VERTICES]);
internal V3f get_barycentric_coords(f32 d00, f32 d01, f32 d11, f32 denom,
const V2i *ab, const V2i *ac,
const V2i *ap);
internal V3f get_viewport_vertex(const V3f *vertex, const Image *img);
Model load_obj_file(Arena *arena, const char *filename, const char *texture) {
if (!arena) {
return INVALID_MODEL;
}
FILE *fp = fopen(filename, "r");
if (!fp) {
return INVALID_MODEL;
}
Model model = (Model){
.vertices = list_create(V3f, arena),
.normals = list_create(V3f, arena),
.texture_coordinates = list_create(V2f, arena),
.triangles = list_create(Triangle, arena),
};
if (!(model.vertices) || !(model.normals) || !(model.texture_coordinates) ||
!(model.triangles)) {
return INVALID_MODEL;
}
char line[8192];
char identifier[8];
V3f vertex;
V3f normal;
V2f coord;
Triangle triangle;
f32 vx, vy, vz;
f32 nx, ny, nz;
f32 u, v;
u64 fp0, fp1, fp2;
u64 vn0, vn1, vn2;
u64 tx0, tx1, tx2;
while (fgets(line, 8191, fp) != NULL) {
sscanf(line, "%s", identifier);
if (strncmp(identifier, "v", 8) == 0) {
sscanf(line + 2, "%f %f %f", &vx, &vy, &vz);
vertex.x = vx;
vertex.y = vy;
vertex.z = vz;
list_append(V3f, arena, model.vertices, vertex);
} else if (strncmp(identifier, "vn", 8) == 0) {
sscanf(line + 2, "%f %f %f", &nx, &ny, &nz);
normal.x = nx;
normal.y = ny;
normal.z = nz;
list_append(V3f, arena, model.normals, normal);
} else if (strncmp(identifier, "vt", 8) == 0) {
sscanf(line + 2, "%f %f", &u, &v);
coord.u = u;
coord.v = v;
list_append(V2f, arena, model.texture_coordinates, coord);
} else if (strncmp(identifier, "f", 8) == 0) {
sscanf(line + 2, "%lu/%lu/%lu %lu/%lu/%lu %lu/%lu/%lu", &fp0, &tx0, &vn0,
&fp1, &tx1, &vn1, &fp2, &tx2, &vn2);
// OBJ indices start from 1
triangle.p0 = fp0 - 1;
triangle.p1 = fp1 - 1;
triangle.p2 = fp2 - 1;
triangle.n0 = vn0 - 1;
triangle.n1 = vn1 - 1;
triangle.n2 = vn2 - 1;
triangle.tx0 = tx0 - 1;
triangle.tx1 = tx1 - 1;
triangle.tx2 = tx2 - 1;
list_append(Triangle, arena, model.triangles, triangle);
}
}
if (texture) {
model.texture = load_p6_image(arena, texture);
}
return model;
}
bool init_render(Arena *arena, Render *render, u64 width, u64 height) {
render->img = (Image){.width = width, .height = height};
if (!init_buffer(arena, &(render->img))) {
return false;
}
render->depth = (Depth){.width = width, .height = height};
if (!init_buffer(arena, &(render->depth))) {
return false;
}
f32 inf = -INFINITY;
clear_buffer(&(render->depth), &inf);
return true;
}
void render_model(const Model *model, Render *render, ShaderID shader,
RenderType render_type, Colour colour) {
Triangle triangle;
for (u64 i = 0; i < model->triangles->count; ++i) {
triangle = list_get(model->triangles, i);
render_triangle(&triangle, model, shader, render, render_type, colour);
}
}
internal void render_triangle(const Triangle *triangle, const Model *model,
ShaderID shader, Render *render,
RenderType render_type, Colour colour) {
Image *img = &(render->img);
V3f vertices[TRIANGLE_VERTICES] = {
list_get(model->vertices, triangle->p0),
list_get(model->vertices, triangle->p1),
list_get(model->vertices, triangle->p2),
};
V3f normals[TRIANGLE_VERTICES] = {
list_get(model->normals, triangle->n0),
list_get(model->normals, triangle->n1),
list_get(model->normals, triangle->n2),
};
V2f coordinates[TRIANGLE_VERTICES] = {
list_get(model->texture_coordinates, triangle->tx0),
list_get(model->texture_coordinates, triangle->tx1),
list_get(model->texture_coordinates, triangle->tx2),
};
for (u64 i = 0; i < TRIANGLE_VERTICES; ++i) {
vertices[i] =
run_vertex_shader(shader, &vertices[i], (Buffer *)&render->img);
}
if (render_type == RENDER_TYPE_WIREFRAME) {
V3f v0, v1;
u64 x0, y0, x1, y1;
for (u64 i = 0; i < TRIANGLE_VERTICES; ++i) {
v0 = vertices[i];
v1 = vertices[(i + 1) % TRIANGLE_VERTICES];
draw_line(img, (u64)v0.x, (u64)v0.y, (u64)v1.x, (u64)v1.y, colour);
}
} else if (render_type == RENDER_TYPE_FILLED ||
render_type == RENDER_TYPE_SHADED) {
fill_triangle(render, shader, vertices, normals, coordinates, colour,
model->texture, render_type);
}
}
internal void fill_triangle(Render *render, ShaderID shader,
V3f vertices[TRIANGLE_VERTICES],
V3f normals[TRIANGLE_VERTICES],
V2f coordinates[TRIANGLE_VERTICES], Colour colour,
Image *texture, RenderType type) {
Image *img = &(render->img);
Depth *depth = &(render->depth);
TriangleBBox bbox = get_triangle_bbox(img, vertices);
V3f v0 = vertices[0];
V3f v1 = vertices[1];
V3f v2 = vertices[2];
V2i ab = V2(V2i, i64, v0.x, v0.y, v1.x, v1.y);
V2i ac = V2(V2i, i64, v0.x, v0.y, v2.x, v2.y);
f32 d00 = dot_v2(ab, ab);
f32 d01 = dot_v2(ab, ac);
f32 d11 = dot_v2(ac, ac);
f32 denom = d00 * d11 - d01 * d01;
V2i ap;
V3f coords;
f32 z;
f32 zbuf;
f32 nx, ny, nz;
V3f normal;
f32 tx_u, tx_v;
u64 tx_x, tx_y;
V2f tex_coords;
FragmentResult result;
f32 intensity = 1.0f;
for (u64 y = bbox.y0; y <= bbox.y1; ++y) {
for (u64 x = bbox.x0; x <= bbox.x1; ++x) {
ap = V2(V2i, i64, v0.x, v0.y, x, y);
coords = get_barycentric_coords(d00, d01, d11, denom, &ab, &ac, &ap);
if (coords.x < 0.0f || coords.y < 0.0f || coords.x + coords.y > 1.0f) {
continue;
}
z = 0.0f;
z += v0.z * coords.x + v1.z * coords.y + v2.z * coords.z;
zbuf = get_pixel(f32, &(render->depth), x, y);
if (z <= zbuf) {
continue;
}
nx = normals[0].x * coords.x + normals[1].x * coords.y +
normals[2].x * coords.z;
ny = normals[0].y * coords.x + normals[1].y * coords.y +
normals[2].y * coords.z;
nz = normals[0].z * coords.x + normals[1].z * coords.y +
normals[2].z * coords.z;
normal = (V3f){nx, ny, nz};
tx_u = coordinates[0].u * coords.x + coordinates[1].u * coords.y +
coordinates[2].u * coords.z;
tx_v = coordinates[0].v * coords.x + coordinates[1].v * coords.y +
coordinates[2].v * coords.z;
tex_coords = (V2f){tx_u, tx_v};
result =
run_fragment_shader(shader, normal, tex_coords, &colour, texture);
if (DISCARD_FRAGMENT(result)) {
continue;
}
set_pixel(depth, x, y, &z);
set_pixel(img, x, y, &result.colour);
}
}
}
internal TriangleBBox get_triangle_bbox(const Image *img,
V3f vertices[TRIANGLE_VERTICES]) {
f32 x0 = min(vertices[0].x, min(vertices[1].x, vertices[2].x));
f32 x1 = max(vertices[0].x, max(vertices[1].x, vertices[2].x));
f32 y0 = min(vertices[0].y, min(vertices[1].y, vertices[2].y));
f32 y1 = max(vertices[0].y, max(vertices[1].y, vertices[2].y));
return (TriangleBBox){
.x0 = x0,
.y0 = y0,
.x1 = x1,
.y1 = y1,
};
}
internal V3f get_barycentric_coords(f32 d00, f32 d01, f32 d11, f32 denom,
const V2i *ab, const V2i *ac,
const V2i *ap) {
if (denom == 0.0f) {
return (V3f){-INFINITY, -INFINITY, -INFINITY};
}
f32 d20 = dot_v2((*ap), (*ab));
f32 d21 = dot_v2((*ap), (*ac));
f32 v = (d11 * d20 - d01 * d21) / denom;
f32 w = (d00 * d21 - d01 * d20) / denom;
f32 u = 1.0f - v - w;
return (V3f){v, w, u};
}
internal V3f get_viewport_vertex(const V3f *vertex, const Image *img) {
V4f vh = {.x = vertex->x, .y = 0.0f - vertex->y, .z = vertex->z, .w = 1.0f};
vh = mat4x4_mul_vec4(viewport(vh.x, vh.y, img->width, img->height), vh);
return project_vec4(vh);
}

View File

@ -4,6 +4,7 @@
#include "aliases.h"
#include "img.h"
#include "mem_arena.h"
#include "shader.h"
#include "typed_list.h"
#define INVALID_MODEL ((Model){0})
@ -22,67 +23,6 @@ struct triangle {
u64 tx2;
};
typedef struct i64x2 V2i;
struct i64x2 {
i64 x;
i64 y;
};
typedef struct u64x2 V2u;
struct u64x2 {
u64 x;
u64 y;
};
typedef struct f32x2 V2f;
struct f32x2 {
union {
f32 x;
f32 u;
};
union {
f32 y;
f32 v;
};
};
typedef struct f32x3 V3f;
struct f32x3 {
f32 x;
f32 y;
f32 z;
};
typedef struct f32x4 V4f;
struct f32x4 {
f32 x;
f32 y;
f32 z;
f32 w;
};
typedef struct u64x3 V3u;
struct u64x3 {
u64 x;
u64 y;
u64 z;
};
typedef struct f32_3x3 M3x3f;
struct f32_3x3 {
V3f row0;
V3f row1;
V3f row2;
};
typedef struct f32_4x4 M4x4f;
struct f32_4x4 {
V4f row0;
V4f row1;
V4f row2;
V4f row3;
};
typedef enum {
RENDER_TYPE_WIREFRAME,
RENDER_TYPE_FILLED,
@ -91,13 +31,6 @@ typedef enum {
COUNT_RENDER_TYPES,
} RenderType;
typedef enum {
COLOUR_TYPE_FIXED,
COLOUR_TYPE_RANDOM,
COUNT_COLOUR_TYPE,
} ColourType;
typedef enum {
PROJECTION_TYPE_ORTHOGRAPHIC,
PROJECTION_TYPE_PERSPECTIVE,
@ -105,8 +38,6 @@ typedef enum {
COUNT_PROJECTION_TYPE,
} ProjectionType;
MAKE_LIST_TYPE(V3f);
MAKE_LIST_TYPE(V2f);
MAKE_LIST_TYPE(Triangle);
typedef struct model Model;
@ -126,8 +57,7 @@ struct render {
Model load_obj_file(Arena *arena, const char *filename, const char *texture);
bool init_render(Arena *arena, Render *render, u64 width, u64 height);
void render_model(const Model *model, Render *render, Colour colour,
RenderType type, ColourType colour_type,
ProjectionType projection);
void render_model(const Model *model, Render *render, ShaderID shader,
RenderType render_type, Colour colour);
#endif // OBJ_H

62
src/shader/shader.c Normal file
View File

@ -0,0 +1,62 @@
#include "shader.h"
#include "aliases.h"
#include "vec.h"
#define MAX_SHADER_COUNT 2048
typedef struct shader_repo ShaderRepo;
struct shader_repo {
void *shaders[MAX_SHADER_COUNT];
VertexShader *vertex_funcs[MAX_SHADER_COUNT];
FragmentShader *fragment_funcs[MAX_SHADER_COUNT];
u64 count;
};
internal ShaderRepo g_repository = {0};
ShaderID create_shader(void *shader, VertexShader *vertex,
FragmentShader *fragment) {
if (g_repository.count + 1 >= MAX_SHADER_COUNT) {
return INVALID_SHADER;
}
++(g_repository.count);
g_repository.shaders[g_repository.count] = shader;
g_repository.vertex_funcs[g_repository.count] = vertex;
g_repository.fragment_funcs[g_repository.count] = fragment;
return (ShaderID){g_repository.count};
}
V3f run_vertex_shader(ShaderID shader, const V3f *vertex,
const Buffer *out_buf) {
if (IS_INVALID_SHADER(shader) || shader.id > g_repository.count || !vertex ||
!out_buf) {
return (V3f){0};
}
void *shader_obj = g_repository.shaders[shader.id];
VertexShader *vertex_func = g_repository.vertex_funcs[shader.id];
if (!shader_obj || !vertex_func) {
return (V3f){0};
}
return vertex_func(shader_obj, vertex, out_buf);
}
FragmentResult run_fragment_shader(ShaderID shader, V3f normal, V2f tex_coords,
const Colour *colour, const Image *texture) {
if (IS_INVALID_SHADER(shader) || shader.id > g_repository.count || !colour) {
return DISCARDED_FRAGMENT;
}
void *shader_obj = g_repository.shaders[shader.id];
FragmentShader *fragment_func = g_repository.fragment_funcs[shader.id];
if (!shader_obj || !fragment_func) {
return DISCARDED_FRAGMENT;
}
return fragment_func(shader_obj, normal, tex_coords, colour, texture);
}

37
src/shader/shader.h Normal file
View File

@ -0,0 +1,37 @@
#ifndef SHADER_H
#define SHADER_H
#include "aliases.h"
#include "img.h"
#include "vec.h"
typedef struct shader_id ShaderID;
struct shader_id {
u64 id;
};
typedef struct fragment_result FragmentResult;
struct fragment_result {
Colour colour;
bool discard;
};
#define INVALID_SHADER ((ShaderID){0})
#define IS_INVALID_SHADER(ID) (ID.id == 0)
#define DISCARDED_FRAGMENT ((FragmentResult){.discard = true})
#define DISCARD_FRAGMENT(RESULT) (RESULT.discard)
typedef V3f(VertexShader)(void *shader, const V3f *vertex,
const Buffer *out_buf);
typedef FragmentResult(FragmentShader)(void *shader, V3f normal, V2f tex_coords,
const Colour *colour,
const Image *texture);
ShaderID create_shader(void *shader, VertexShader *vertex,
FragmentShader *fragment);
V3f run_vertex_shader(ShaderID shader, const V3f *vertex,
const Buffer *out_buf);
FragmentResult run_fragment_shader(ShaderID shader, V3f normal, V2f tex_coords,
const Colour *colour, const Image *texture);
#endif // SHADER_H

148
src/shader/shaders.c Normal file
View File

@ -0,0 +1,148 @@
#include "img.h"
#include "obj.h"
#include "shader.h"
#include "utils.h"
#include "vec.h"
typedef struct shader Shader;
struct shader {
M4x4f model_view;
M4x4f projection;
};
Shader perspective = {0};
Shader orthographic = {0};
ShaderID perspective_lit_textured_id = {0};
ShaderID perspective_lit_coloured_id = {0};
ShaderID perspective_albedo_id = {0};
ShaderID orthographic_lit_textured_id = {0};
ShaderID orthographic_lit_coloured_id = {0};
ShaderID orthographic_albedo_id = {0};
V3f g_light_dir = {0.0f, 0.0f, 1.0f};
V3f g_eye = {0.2f, 0.1f, 0.75f};
V3f g_target = {0};
V3f g_up = {0.0f, 1.0f, 0.0f};
M4x4f g_cam_matrix = mat4x4_identity;
internal V3f general_shader_vertex(void *shader, const V3f *vertex,
const Buffer *out_buf);
internal FragmentResult lit_textured_shader_fragment(void *shader, V3f normal,
V2f tex_coords,
const Colour *colour,
const Image *texture);
internal FragmentResult lit_coloured_shader_fragment(void *shader, V3f normal,
V2f tex_coords,
const Colour *colour,
const Image *texture);
internal FragmentResult albedo_shader_fragment(void *shader, V3f normal,
V2f tex_coords,
const Colour *colour,
const Image *texture);
internal M4x4f get_projection_matrix(ProjectionType projection_type);
internal f32 get_intensity(const V3f *normal);
void load_shaders(void) {
M4x4f model_view = lookat(g_eye, g_target, g_up);
M4x4f orthographic_projection =
get_projection_matrix(PROJECTION_TYPE_ORTHOGRAPHIC);
M4x4f perspective_projection =
get_projection_matrix(PROJECTION_TYPE_PERSPECTIVE);
perspective.model_view = orthographic.model_view = model_view;
perspective.projection = perspective_projection;
orthographic.projection = orthographic_projection;
perspective_lit_textured_id = create_shader(
&perspective, general_shader_vertex, lit_textured_shader_fragment);
perspective_lit_coloured_id = create_shader(
&perspective, general_shader_vertex, lit_coloured_shader_fragment);
perspective_albedo_id = create_shader(&perspective, general_shader_vertex,
albedo_shader_fragment);
orthographic_lit_textured_id = create_shader(
&orthographic, general_shader_vertex, lit_textured_shader_fragment);
orthographic_lit_coloured_id = create_shader(
&orthographic, general_shader_vertex, lit_coloured_shader_fragment);
orthographic_albedo_id = create_shader(&orthographic, general_shader_vertex,
albedo_shader_fragment);
}
internal V3f general_shader_vertex(void *shader, const V3f *vertex,
const Buffer *out_buf) {
Shader *shader_ptr = (Shader *)shader;
V4f vh = {.x = vertex->x, .y = vertex->y, .z = vertex->z, .w = 1.0f};
vh = mat4x4_mul_vec4(shader_ptr->projection,
mat4x4_mul_vec4(shader_ptr->model_view, vh));
vh.y = 0.0 - vh.y;
vh = mat4x4_mul_vec4(viewport(vh.x, vh.y, out_buf->width, out_buf->height),
vh);
return project_vec4(vh);
}
internal FragmentResult lit_textured_shader_fragment(void *shader, V3f normal,
V2f tex_coords,
const Colour *colour,
const Image *texture) {
if (!texture) {
return DISCARDED_FRAGMENT;
}
f32 intensity = get_intensity(&normal);
u64 tx_x = tex_coords.u * texture->width;
u64 tx_y = (1.0f - tex_coords.v) * texture->height;
Colour output = get_pixel(Colour, texture, tx_x, tx_y);
output.r *= intensity;
output.g *= intensity;
output.b *= intensity;
return (FragmentResult){.colour = output};
}
internal FragmentResult lit_coloured_shader_fragment(void *shader, V3f normal,
V2f tex_coords,
const Colour *colour,
const Image *texture) {
f32 intensity = get_intensity(&normal);
Colour output = *colour;
output.r *= intensity;
output.g *= intensity;
output.b *= intensity;
return (FragmentResult){.colour = output};
}
internal FragmentResult albedo_shader_fragment(void *shader, V3f normal,
V2f tex_coords,
const Colour *colour,
const Image *texture) {
return (FragmentResult){.colour = *colour};
}
internal M4x4f get_projection_matrix(ProjectionType projection_type) {
if (projection_type == PROJECTION_TYPE_PERSPECTIVE) {
// Calculate projection matrix
V3f cam = V3(V3f, f32, g_target.x, g_target.y, g_target.z, g_eye.x, g_eye.y,
g_eye.z);
normalise_v3(cam);
f32 coeff = -1.0f / magnitude_v3(cam) * 0.5f;
return projection(coeff);
}
return mat4x4_identity;
}
internal f32 get_intensity(const V3f *normal) {
f32 intensity = dot_v3((*normal), g_light_dir);
if (intensity < 0.0f) {
intensity = 0.01f;
}
return intensity;
}

6
src/shader/shaders.h Normal file
View File

@ -0,0 +1,6 @@
#ifndef SHADERS_H
#define SHADERS_H
void load_shaders(void);
#endif // SHADERS_H

57
src/vec/vec.c Normal file
View File

@ -0,0 +1,57 @@
#include "vec.h"
#define DEPTH_MAX 255
M4x4f lookat(V3f eye, V3f target, V3f up) {
V3f z = V3(V3f, f32, target.x, target.y, target.z, eye.x, eye.y, eye.z);
normalise_v3(z);
V3f x = cross_product(up, z);
normalise_v3(x);
V3f y = cross_product(z, x);
normalise_v3(y);
M4x4f rotation = mat4x4_identity;
rotation.row0.x = x.x;
rotation.row0.y = x.y;
rotation.row0.z = x.z;
rotation.row1.x = y.x;
rotation.row1.y = y.y;
rotation.row1.z = y.z;
rotation.row2.x = z.x;
rotation.row2.y = z.y;
rotation.row2.z = z.z;
M4x4f translation = mat4x4_identity;
translation.row0.w = -(eye.x);
translation.row1.w = -(eye.y);
translation.row2.w = -(eye.z);
return mat4x4_mul(rotation, translation);
}
M4x4f projection(f32 coeff) {
// clang-format off
return (M4x4f){
.row0 = {1.0f, 0.0f, 0.0f, 0.0f},
.row1 = {0.0f, 1.0f, 0.0f, 0.0f},
.row2 = {0.0f, 0.0f, 1.0f, 0.0f},
.row3 = {0.0f, 0.0f, coeff, 1.0f},
};
// clang-format on
}
M4x4f viewport(f32 x, f32 y, u64 w, u64 h) {
M4x4f output = mat4x4_identity;
f32 half_width = (f32)w * 0.5f;
f32 half_height = (f32)h * 0.5f;
f32 half_depth = (f32)DEPTH_MAX * 0.5f;
output.row0.x = half_width;
output.row0.w = x + half_width;
output.row1.y = half_height;
output.row1.w = y + half_height;
output.row2.z = output.row2.w = half_depth;
return output;
}

163
src/vec/vec.h Normal file
View File

@ -0,0 +1,163 @@
#ifndef VEC_H
#define VEC_H
#include "aliases.h"
#include "typed_list.h"
#include <math.h>
typedef struct i64x2 V2i;
struct i64x2 {
i64 x;
i64 y;
};
typedef struct u64x2 V2u;
struct u64x2 {
u64 x;
u64 y;
};
typedef struct f32x2 V2f;
struct f32x2 {
union {
f32 x;
f32 u;
};
union {
f32 y;
f32 v;
};
};
typedef struct f32x3 V3f;
struct f32x3 {
f32 x;
f32 y;
f32 z;
};
typedef struct f32x4 V4f;
struct f32x4 {
f32 x;
f32 y;
f32 z;
f32 w;
};
typedef struct u64x3 V3u;
struct u64x3 {
u64 x;
u64 y;
u64 z;
};
typedef struct f32_3x3 M3x3f;
struct f32_3x3 {
V3f row0;
V3f row1;
V3f row2;
};
typedef struct f32_4x4 M4x4f;
struct f32_4x4 {
V4f row0;
V4f row1;
V4f row2;
V4f row3;
};
MAKE_LIST_TYPE(V3f);
MAKE_LIST_TYPE(V2f);
#define V2(T, ELEM_T, X0, Y0, X1, Y1) \
((T){(ELEM_T)X1 - (ELEM_T)X0, (ELEM_T)Y1 - (ELEM_T)Y0})
#define V3(T, ELEM_T, X0, Y0, Z0, X1, Y1, Z1) \
((T){(ELEM_T)X1 - (ELEM_T)X0, (ELEM_T)Y1 - (ELEM_T)Y0, \
(ELEM_T)Z1 - (ELEM_T)Z0})
#define dot_v2(V1, V2) ((f32)V1.x * (f32)V2.x + (f32)V1.y * (f32)V2.y)
#define dot_v3(V1, V2) \
((f32)V1.x * (f32)V2.x + (f32)V1.y * (f32)V2.y + (f32)V1.z * (f32)V2.z)
#define magnitude_v3(V) (sqrtf(dot_v3(V, V)))
#define normalise_v3(V) \
do { \
f32 magnitude = magnitude_v3(V); \
V.x /= magnitude; \
V.y /= magnitude; \
V.z /= magnitude; \
} while (0)
#define cross_product(V1, V2) \
((V3f){ \
.x = V1.y * V2.z - V1.z * V2.y, \
.y = V1.z * V2.x - V1.x * V2.z, \
.z = V1.x * V2.y - V1.y * V2.x, \
})
#define mat4x4_identity \
((M4x4f){ \
.row0 = {1.0f, 0.0f, 0.0f, 0.0f}, \
.row1 = {0.0f, 1.0f, 0.0f, 0.0f}, \
.row2 = {0.0f, 0.0f, 1.0f, 0.0f}, \
.row3 = {0.0f, 0.0f, 0.0f, 1.0f}, \
})
#define mat4x4_mul(MAT1, MAT2) \
((M4x4f){ \
.row0.x = MAT1.row0.x * MAT2.row0.x + MAT1.row0.y * MAT2.row1.x + \
MAT1.row0.z * MAT2.row2.x + MAT1.row0.w * MAT2.row3.x, \
.row0.y = MAT1.row0.x * MAT2.row0.y + MAT1.row0.y * MAT2.row1.y + \
MAT1.row0.z * MAT2.row2.y + MAT1.row0.w * MAT2.row3.y, \
.row0.z = MAT1.row0.x * MAT2.row0.z + MAT1.row0.y * MAT2.row1.z + \
MAT1.row0.z * MAT2.row2.z + MAT1.row0.w * MAT2.row3.z, \
.row0.w = MAT1.row0.x * MAT2.row0.w + MAT1.row0.y * MAT2.row1.w + \
MAT1.row0.z * MAT2.row2.w + MAT1.row0.w * MAT2.row3.w, \
.row1.x = MAT1.row1.x * MAT2.row0.x + MAT1.row1.y * MAT2.row1.x + \
MAT1.row1.z * MAT2.row2.x + MAT1.row1.w * MAT2.row3.x, \
.row1.y = MAT1.row1.x * MAT2.row0.y + MAT1.row1.y * MAT2.row1.y + \
MAT1.row1.z * MAT2.row2.y + MAT1.row1.w * MAT2.row3.y, \
.row1.z = MAT1.row1.x * MAT2.row0.z + MAT1.row1.y * MAT2.row1.z + \
MAT1.row1.z * MAT2.row2.z + MAT1.row1.w * MAT2.row3.z, \
.row1.w = MAT1.row1.x * MAT2.row0.w + MAT1.row1.y * MAT2.row1.w + \
MAT1.row1.z * MAT2.row2.w + MAT1.row1.w * MAT2.row3.w, \
.row2.x = MAT1.row2.x * MAT2.row0.x + MAT1.row2.y * MAT2.row1.x + \
MAT1.row2.z * MAT2.row2.x + MAT1.row2.w * MAT2.row3.x, \
.row2.y = MAT1.row2.x * MAT2.row0.y + MAT1.row2.y * MAT2.row1.y + \
MAT1.row2.z * MAT2.row2.y + MAT1.row2.w * MAT2.row3.y, \
.row2.z = MAT1.row2.x * MAT2.row0.z + MAT1.row2.y * MAT2.row1.z + \
MAT1.row2.z * MAT2.row2.z + MAT1.row2.w * MAT2.row3.z, \
.row2.w = MAT1.row2.x * MAT2.row0.w + MAT1.row2.y * MAT2.row1.w + \
MAT1.row2.z * MAT2.row2.w + MAT1.row2.w * MAT2.row3.w, \
.row3.x = MAT1.row3.x * MAT2.row0.x + MAT1.row3.y * MAT2.row1.x + \
MAT1.row3.z * MAT2.row2.x + MAT1.row3.w * MAT2.row3.x, \
.row3.y = MAT1.row3.x * MAT2.row0.y + MAT1.row3.y * MAT2.row1.y + \
MAT1.row3.z * MAT2.row2.y + MAT1.row3.w * MAT2.row3.y, \
.row3.z = MAT1.row3.x * MAT2.row0.z + MAT1.row3.y * MAT2.row1.z + \
MAT1.row3.z * MAT2.row2.z + MAT1.row3.w * MAT2.row3.z, \
.row3.w = MAT1.row3.x * MAT2.row0.w + MAT1.row3.y * MAT2.row1.w + \
MAT1.row3.z * MAT2.row2.w + MAT1.row3.w * MAT2.row3.w, \
})
#define mat4x4_mul_vec4(MAT, V) \
((V4f){ \
.x = MAT.row0.x * V.x + MAT.row0.y * V.y + MAT.row0.z * V.z + \
MAT.row0.w * V.w, \
.y = MAT.row1.x * V.x + MAT.row1.y * V.y + MAT.row1.z * V.z + \
MAT.row1.w * V.w, \
.z = MAT.row2.x * V.x + MAT.row2.y * V.y + MAT.row2.z * V.z + \
MAT.row2.w * V.w, \
.w = MAT.row3.x * V.x + MAT.row3.y * V.y + MAT.row3.z * V.z + \
MAT.row3.w * V.w, \
})
#define project_vec4(V) ((V3f){.x = V.x / V.w, .y = V.y / V.w, .z = V.z / V.w})
M4x4f lookat(V3f eye, V3f target, V3f up);
M4x4f projection(f32 coeff);
M4x4f viewport(f32 x, f32 y, u64 w, u64 h);
#endif // VEC_H