200 lines
6.5 KiB
C

#include "aliases.h"
#include "img.h"
#include "obj.h"
#include "render.h"
#include "shader.h"
#include "utils.h"
#include "vec.h"
#include <math.h>
typedef struct shader Shader;
struct shader {
M4x4f model_view;
M4x4f projection;
};
ShaderID perspective_phong = {0};
ShaderID perspective_albedo = {0};
ShaderID orthographic_phong = {0};
ShaderID orthographic_albedo = {0};
internal Shader perspective = {0};
internal Shader orthographic = {0};
internal V3f g_ambient_light = {0.6f, 0.45f, 0.55f};
internal PointLight g_directional_light = {
.diffuse_intensity = {0.9f, 1.0f, 1.0f},
.specular_intensity = {1.0f, 0.8f, 2.0f},
.position = {1.05f, 0.9f, 1.2f},
};
internal V3f g_eye = {0.2f, 0.1f, 0.75f};
internal V3f g_target = {0};
internal V3f g_up = {0.0f, 1.0f, 0.0f};
internal V3f general_shader_vertex(void *shader, const V3f *vertex);
internal FragmentResult phong_shader_fragment(void *shader,
const FragmentData *data,
const Colour *colour,
const Model *model);
internal FragmentResult albedo_shader_fragment(void *shader,
const FragmentData *data,
const Colour *colour,
const Model *model);
internal M4x4f get_projection_matrix(ProjectionType projection_type);
internal f32 get_intensity(const V3f *normal);
void load_shaders(void) {
M4x4f model_view = lookat(g_eye, g_target, g_up);
M4x4f orthographic_projection =
get_projection_matrix(PROJECTION_TYPE_ORTHOGRAPHIC);
M4x4f perspective_projection =
get_projection_matrix(PROJECTION_TYPE_PERSPECTIVE);
perspective.model_view = orthographic.model_view = model_view;
perspective.projection = perspective_projection;
orthographic.projection = orthographic_projection;
perspective_phong = register_shader(&perspective, general_shader_vertex,
phong_shader_fragment);
perspective_albedo = register_shader(&perspective, general_shader_vertex,
albedo_shader_fragment);
orthographic_phong = register_shader(&orthographic, general_shader_vertex,
phong_shader_fragment);
orthographic_albedo = register_shader(&orthographic, general_shader_vertex,
albedo_shader_fragment);
}
internal V3f general_shader_vertex(void *shader, const V3f *vertex) {
Shader *shader_ptr = (Shader *)shader;
V4f vh = {.x = vertex->x, .y = vertex->y, .z = vertex->z, .w = 1.0f};
vh = mat4x4_mul_vec4(shader_ptr->projection,
mat4x4_mul_vec4(shader_ptr->model_view, vh));
return project_vec4(vh);
}
internal FragmentResult phong_shader_fragment(void *shader,
const FragmentData *data,
const Colour *colour,
const Model *model) {
Shader *shader_ptr = (Shader *)shader;
V4f hnorm;
V3f norm;
if (model->normal) {
u64 nm_x = data->tex_coords.u * model->normal->width;
u64 nm_y = data->tex_coords.v * model->normal->height;
Colour pixel = get_pixel(Colour, model->normal, nm_x, nm_y);
hnorm = (V4f){
.x = pixel.r,
.y = pixel.g,
.z = pixel.b,
.w = 1.0f,
};
} else {
hnorm = V3_to_V4(data->normal);
}
M4x4f matrix = mat4x4_mul(shader_ptr->projection, shader_ptr->model_view);
M4x4f transposed = mat4x4_transpose(matrix);
M4x4f inv_transpose = mat4x4_inv(transposed);
hnorm = mat4x4_mul_vec4(inv_transpose, hnorm);
norm = project_vec4(hnorm);
normalise_v3(norm);
Colour output;
if (model->texture) {
u64 tx_x = data->tex_coords.u * model->texture->width;
u64 tx_y = data->tex_coords.v * model->texture->height;
output = get_pixel(Colour, model->texture, tx_x, tx_y);
} else {
output = *colour;
}
V3f local_colour = {.r = output.r, .g = output.g, .b = output.b};
local_colour = num_div_v3(local_colour, 255.0f);
// Ambient term
V3f intensity = num_mul_v3(g_ambient_light, model->material.ambient);
V4f hdir = V3_to_V4(g_directional_light.position);
hdir = mat4x4_mul_vec4(matrix, hdir);
V3f light_pos = project_vec4(hdir);
normalise_v3(light_pos);
V3f light_dir = sub_v3(light_pos, data->position);
// Diffuse term
f32 l_dot_n = dot_v3(norm, light_dir);
if (l_dot_n <= 0.0f) {
goto RETURN_OUTPUT_COLOUR;
}
V3f diffuse = num_mul_v3(g_directional_light.diffuse_intensity,
model->material.diffuse * l_dot_n);
intensity = add_v3(intensity, diffuse);
// Specular term
V3f _2_l_dot_n_norm = num_mul_v3(norm, 2.0f * l_dot_n);
V3f reflected = sub_v3(_2_l_dot_n_norm, light_dir);
normalise_v3(reflected);
V3f v = sub_v3(g_eye, data->position);
normalise_v3(v);
f32 r_dot_v = dot_v3(reflected, v);
if (r_dot_v <= 0.0f) {
goto RETURN_OUTPUT_COLOUR;
}
V3f specular = num_mul_v3(g_directional_light.specular_intensity,
model->material.specular *
powf(r_dot_v, model->material.shininess));
intensity = add_v3(intensity, specular);
RETURN_OUTPUT_COLOUR:
intensity.r = clamp(intensity.r, 0.0f, 1.0f);
intensity.g = clamp(intensity.g, 0.0f, 1.0f);
intensity.b = clamp(intensity.b, 0.0f, 1.0f);
local_colour = mul_v3(local_colour, intensity);
output.r = 255.0f * local_colour.r;
output.g = 255.0f * local_colour.g;
output.b = 255.0f * local_colour.b;
return (FragmentResult){.colour = output};
}
internal FragmentResult albedo_shader_fragment(void *shader,
const FragmentData *data,
const Colour *colour,
const Model *model) {
return (FragmentResult){.colour = *colour};
}
internal M4x4f get_projection_matrix(ProjectionType projection_type) {
if (projection_type == PROJECTION_TYPE_PERSPECTIVE) {
// Calculate projection matrix
V3f cam = V3(V3f, f32, g_target.x, g_target.y, g_target.z, g_eye.x, g_eye.y,
g_eye.z);
normalise_v3(cam);
f32 coeff = -1.0f / magnitude_v3(cam) * 0.5f;
return projection(coeff);
}
return mat4x4_identity;
}
internal f32 get_intensity(const V3f *normal) {
V3f light = g_directional_light.position;
normalise_v3(light);
f32 intensity = dot_v3((*normal), light);
if (intensity < 0.0f) {
intensity = 0.001f;
}
return intensity;
}