1114 lines
44 KiB
C++
1114 lines
44 KiB
C++
#include <cassert>
|
|
#include <cstring>
|
|
#include <glm/trigonometric.hpp>
|
|
#include <tuple>
|
|
#if defined(__INTELLISENSE__) || !defined(USE_CPP20_MODULES)
|
|
#include "vulkan/vulkan.hpp"
|
|
#include <vulkan/vulkan_raii.hpp>
|
|
#include <vulkan/vulkan_core.h>
|
|
#else
|
|
import vulkan_hpp;
|
|
#endif
|
|
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include <stb_image.h>
|
|
#define GLFW_INCLUDE_VULKAN
|
|
#include <GLFW/glfw3.h>
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtc/matrix_transform.hpp>
|
|
#include <chrono>
|
|
#include <ios>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <array>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <stdexcept>
|
|
#include <cstdlib>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <algorithm>
|
|
|
|
constexpr uint32_t WIDTH = 800;
|
|
constexpr uint32_t HEIGHT = 600;
|
|
constexpr int32_t MAX_FRAMES_IN_FLIGHT = 2;
|
|
|
|
struct Vertex {
|
|
glm::vec2 position;
|
|
glm::vec3 color;
|
|
|
|
static vk::VertexInputBindingDescription getBindingDescription() {
|
|
return {
|
|
.binding = 0,
|
|
.stride = sizeof(Vertex),
|
|
.inputRate = vk::VertexInputRate::eVertex,
|
|
};
|
|
}
|
|
|
|
static std::array<vk::VertexInputAttributeDescription, 2> getAttributeDescriptions() {
|
|
return {
|
|
vk::VertexInputAttributeDescription{
|
|
.location = 0,
|
|
.binding = 0,
|
|
.format = vk::Format::eR32G32Sfloat,
|
|
.offset = offsetof(Vertex, position),
|
|
},
|
|
vk::VertexInputAttributeDescription{
|
|
.location = 1,
|
|
.binding = 0,
|
|
.format = vk::Format::eR32G32B32Sfloat,
|
|
.offset = offsetof(Vertex, color),
|
|
}
|
|
};
|
|
}
|
|
};
|
|
|
|
struct UniformBufferObject {
|
|
alignas(16) glm::mat4 model;
|
|
alignas(16) glm::mat4 view;
|
|
alignas(16) glm::mat4 proj;
|
|
};
|
|
|
|
const std::vector<Vertex> vertices = {
|
|
{{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}},
|
|
{{ 0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}},
|
|
{{ 0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}},
|
|
{{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}}
|
|
};
|
|
|
|
const std::vector<uint16_t> indices = { 0, 1, 2, 2, 3, 0 };
|
|
|
|
const std::vector<char const *> validationLayers = {
|
|
"VK_LAYER_KHRONOS_validation"
|
|
};
|
|
|
|
#ifdef NDEBUG
|
|
constexpr bool enableValidationLayers = false;
|
|
#else
|
|
constexpr bool enableValidationLayers = true;
|
|
#endif
|
|
|
|
static std::vector<char> readFile(const std::string &filename) {
|
|
std::ifstream file(filename, std::ios::ate | std::ios::binary);
|
|
if (!file.is_open()) {
|
|
throw std::runtime_error("failed to open file!");
|
|
}
|
|
|
|
std::vector<char> buffer(file.tellg());
|
|
file.seekg(0, std::ios::beg);
|
|
file.read(buffer.data(), static_cast<std::streamsize>(buffer.size()));
|
|
file.close();
|
|
|
|
return buffer;
|
|
}
|
|
|
|
class HelloTriangleApplication {
|
|
public:
|
|
void run() {
|
|
initWindow();
|
|
initVulkan();
|
|
mainLoop();
|
|
cleanup();
|
|
}
|
|
private:
|
|
void initWindow() {
|
|
glfwInit();
|
|
// Don't create an OpenGL context
|
|
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
|
|
glfwWindowHint(GLFW_RESIZABLE, GLFW_TRUE);
|
|
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
|
|
glfwSetWindowUserPointer(window, this);
|
|
glfwSetFramebufferSizeCallback(window, framebufferResizeCallback);
|
|
}
|
|
static void framebufferResizeCallback(GLFWwindow *window, int width, int height) {
|
|
auto app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindowUserPointer(window));
|
|
app->framebufferResized = true;
|
|
}
|
|
void initVulkan() {
|
|
createInstance();
|
|
createSurface();
|
|
pickPhysicalDevice();
|
|
createLogicalDevice();
|
|
createSwapChain();
|
|
createImageViews();
|
|
createDescriptorSetLayout();
|
|
createGraphicsPipeline();
|
|
createCommandPool();
|
|
createTextureImage();
|
|
createTextureImageView();
|
|
createTextureSampler();
|
|
createVertexBuffer();
|
|
createIndexBuffer();
|
|
createUniformBuffers();
|
|
createDescriptorPool();
|
|
createDescriptorSets();
|
|
createCommandBuffers();
|
|
createSyncObjects();
|
|
}
|
|
void mainLoop() {
|
|
while (!glfwWindowShouldClose(window)) {
|
|
glfwPollEvents();
|
|
drawFrame();
|
|
}
|
|
|
|
device.waitIdle();
|
|
}
|
|
void drawFrame() {
|
|
// Wait till fence is signalled
|
|
while (vk::Result::eTimeout == device.waitForFences(*drawFences[frameIndex], vk::True, UINT64_MAX)) {}
|
|
|
|
vk::Result result;
|
|
uint32_t imageIndex;
|
|
try {
|
|
std::tie(result, imageIndex) = swapChain.acquireNextImage(UINT64_MAX, *presentCompleteSemaphores[frameIndex], nullptr);
|
|
if (result == vk::Result::eErrorOutOfDateKHR) {
|
|
recreateSwapChain();
|
|
return;
|
|
}
|
|
if (result != vk::Result::eSuccess && result != vk::Result::eSuboptimalKHR) {
|
|
throw std::runtime_error("failed to acquire swap chain image!");
|
|
}
|
|
} catch (const vk::SystemError &e) {
|
|
if (e.code().value() == static_cast<int>(vk::Result::eErrorOutOfDateKHR)) {
|
|
recreateSwapChain();
|
|
return;
|
|
} else {
|
|
throw;
|
|
}
|
|
}
|
|
|
|
device.resetFences(*drawFences[frameIndex]);
|
|
|
|
updateUniformBuffer(frameIndex);
|
|
|
|
recordCommandBuffer(imageIndex);
|
|
|
|
vk::PipelineStageFlags waitDestinationStageMask(vk::PipelineStageFlagBits::eColorAttachmentOutput);
|
|
const vk::SubmitInfo submitInfo = {
|
|
.waitSemaphoreCount = 1,
|
|
.pWaitSemaphores = &*presentCompleteSemaphores[frameIndex],
|
|
.pWaitDstStageMask = &waitDestinationStageMask,
|
|
.commandBufferCount = 1,
|
|
.pCommandBuffers = &*commandBuffers[frameIndex],
|
|
.signalSemaphoreCount = 1,
|
|
.pSignalSemaphores = &*renderFinishedSemaphores[imageIndex],
|
|
};
|
|
graphicsQueue.submit(submitInfo, *drawFences[frameIndex]);
|
|
|
|
try {
|
|
// Presentation
|
|
vk::PresentInfoKHR presentInfoKHR = {
|
|
.waitSemaphoreCount = 1,
|
|
.pWaitSemaphores = &*renderFinishedSemaphores[imageIndex],
|
|
.swapchainCount = 1,
|
|
.pSwapchains = &*swapChain,
|
|
.pImageIndices = &imageIndex,
|
|
};
|
|
result = graphicsQueue.presentKHR(presentInfoKHR);
|
|
if (result == vk::Result::eErrorOutOfDateKHR || result == vk::Result::eSuboptimalKHR || framebufferResized) {
|
|
framebufferResized = false;
|
|
recreateSwapChain();
|
|
} else if (result != vk::Result::eSuccess) {
|
|
throw std::runtime_error("failed to present swap chain image!");
|
|
}
|
|
} catch (const vk::SystemError &e) {
|
|
if (e.code().value() == static_cast<int>(vk::Result::eErrorOutOfDateKHR)) {
|
|
recreateSwapChain();
|
|
return;
|
|
} else {
|
|
throw;
|
|
}
|
|
}
|
|
|
|
frameIndex = (frameIndex + 1) % MAX_FRAMES_IN_FLIGHT;
|
|
}
|
|
void cleanup() {
|
|
cleanupSwapChain();
|
|
glfwDestroyWindow(window);
|
|
glfwTerminate();
|
|
}
|
|
void createInstance() {
|
|
constexpr vk::ApplicationInfo appInfo {
|
|
.pApplicationName = "Hello Triangle",
|
|
.applicationVersion = VK_MAKE_VERSION(1, 0, 0),
|
|
.pEngineName = "No Engine",
|
|
.engineVersion = VK_MAKE_VERSION(1, 0, 0),
|
|
.apiVersion = vk::ApiVersion14,
|
|
};
|
|
|
|
// Get the required layers
|
|
std::vector<char const*> requiredLayers;
|
|
if (enableValidationLayers) {
|
|
requiredLayers.assign(validationLayers.begin(), validationLayers.end());
|
|
}
|
|
|
|
// Check if the required layers are supported by the Vulkan implementation.
|
|
auto layerProperties = context.enumerateInstanceLayerProperties();
|
|
if (std::ranges::any_of(requiredLayers, [&layerProperties](auto const& requiredLayer) {
|
|
return std::ranges::none_of(layerProperties,
|
|
[requiredLayer](auto const& layerProperty)
|
|
{ return strcmp(layerProperty.layerName, requiredLayer) == 0; });
|
|
}))
|
|
{
|
|
throw std::runtime_error("One or more required layers are not supported!");
|
|
}
|
|
|
|
// Get the required instance extensions from GLFW.
|
|
uint32_t glfwExtensionCount = 0;
|
|
auto glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
|
|
|
// Check if the required GLFW extensions are supported by the Vulkan implementation.
|
|
auto extensionProperties = context.enumerateInstanceExtensionProperties();
|
|
for (uint32_t i = 0; i < glfwExtensionCount; ++i)
|
|
{
|
|
if (std::ranges::none_of(extensionProperties,
|
|
[glfwExtension = glfwExtensions[i]](auto const& extensionProperty)
|
|
{ return strcmp(extensionProperty.extensionName, glfwExtension) == 0; }))
|
|
{
|
|
throw std::runtime_error("Required GLFW extension not supported: " + std::string(glfwExtensions[i]));
|
|
}
|
|
}
|
|
vk::InstanceCreateInfo createInfo {
|
|
.pApplicationInfo = &appInfo,
|
|
.enabledLayerCount = static_cast<uint32_t>(requiredLayers.size()),
|
|
.ppEnabledLayerNames = requiredLayers.data(),
|
|
.enabledExtensionCount = glfwExtensionCount,
|
|
.ppEnabledExtensionNames = glfwExtensions,
|
|
};
|
|
|
|
instance = vk::raii::Instance(context, createInfo);
|
|
}
|
|
void createSurface() {
|
|
VkSurfaceKHR _surface;
|
|
if (glfwCreateWindowSurface(*instance, window, nullptr, &_surface) != 0) {
|
|
throw std::runtime_error("failed to create window surface!");
|
|
}
|
|
|
|
surface = vk::raii::SurfaceKHR(instance, _surface);
|
|
}
|
|
void pickPhysicalDevice() {
|
|
std::vector<const char*> deviceExtensions = {
|
|
vk::KHRSwapchainExtensionName,
|
|
vk::KHRSpirv14ExtensionName,
|
|
vk::KHRCreateRenderpass2ExtensionName,
|
|
};
|
|
|
|
auto devices = instance.enumeratePhysicalDevices();
|
|
if (devices.empty()) {
|
|
throw std::runtime_error("failed to find GPUs with Vulkan support!");
|
|
}
|
|
|
|
for (const auto &device : devices) {
|
|
auto deviceProperties = device.getProperties();
|
|
auto deviceFeatures = device.getFeatures();
|
|
auto queueFamilies = device.getQueueFamilyProperties();
|
|
auto extensions = device.enumerateDeviceExtensionProperties();
|
|
bool isSuitable = deviceProperties.apiVersion >= VK_API_VERSION_1_3;
|
|
bool extensionFound = true;
|
|
|
|
const vk::QueueFamilyProperties *qf = nullptr;
|
|
for (const auto &qfp : queueFamilies) {
|
|
if ((qfp.queueFlags & vk::QueueFlagBits::eGraphics) != static_cast<vk::QueueFlags>(0)) {
|
|
qf = &qfp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
isSuitable = isSuitable && (qf != nullptr);
|
|
|
|
for (const auto &extension : deviceExtensions) {
|
|
auto extensionIter = std::ranges::find_if(extensions, [extension](auto const & ext) {return strcmp(ext.extensionName, extension) == 0;});
|
|
extensionFound = extensionFound && extensionIter != extensions.end();
|
|
}
|
|
|
|
isSuitable = isSuitable && extensionFound;
|
|
|
|
if (isSuitable) {
|
|
physicalDevice = device;
|
|
return;
|
|
}
|
|
|
|
throw std::runtime_error("failed to find a suitable GPU");
|
|
}
|
|
}
|
|
void createLogicalDevice() {
|
|
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
|
|
graphicsQueueIndex = findQueueFamilies(physicalDevice);
|
|
float queuePriority = 0.5f;
|
|
vk::DeviceQueueCreateInfo deviceQueueCreateInfo {
|
|
.queueFamilyIndex = graphicsQueueIndex,
|
|
.queueCount = 1,
|
|
.pQueuePriorities = &queuePriority,
|
|
};
|
|
|
|
// Create a chain of feature structures
|
|
vk::StructureChain<vk::PhysicalDeviceFeatures2,
|
|
vk::PhysicalDeviceVulkan13Features,
|
|
vk::PhysicalDeviceVulkan11Features,
|
|
vk::PhysicalDeviceExtendedDynamicStateFeaturesEXT> featureChain = {
|
|
{.features = {.samplerAnisotropy = true}}, // vk::PhysicalDeviceFeatures2
|
|
{.synchronization2 = true,
|
|
.dynamicRendering = true}, // Enable dynamic rendering and synchronization2 from Vulkan 1.3
|
|
{.shaderDrawParameters = true}, // Enable shader draw parameters from Vulkan 1.2
|
|
{.extendedDynamicState = true} // Enable extended dynamic state from the extension
|
|
};
|
|
|
|
std::vector<const char*> deviceExtensions = {
|
|
vk::KHRSwapchainExtensionName,
|
|
vk::KHRSpirv14ExtensionName,
|
|
vk::KHRSynchronization2ExtensionName,
|
|
vk::KHRCreateRenderpass2ExtensionName
|
|
};
|
|
|
|
vk::DeviceCreateInfo deviceCreateInfo {
|
|
.pNext = &featureChain.get<vk::PhysicalDeviceFeatures2>(),
|
|
.queueCreateInfoCount = 1,
|
|
.pQueueCreateInfos = &deviceQueueCreateInfo,
|
|
.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size()),
|
|
.ppEnabledExtensionNames = deviceExtensions.data(),
|
|
};
|
|
|
|
device = vk::raii::Device(physicalDevice, deviceCreateInfo);
|
|
graphicsQueue = vk::raii::Queue(device, graphicsQueueIndex, 0);
|
|
}
|
|
void createSwapChain() {
|
|
auto surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(surface);
|
|
swapChainSurfaceFormat = chooseSwapSurfaceFormat(physicalDevice.getSurfaceFormatsKHR(surface));
|
|
swapChainExtent = chooseSwapExtent(surfaceCapabilities);
|
|
auto minImageCount = std::max(3u, surfaceCapabilities.minImageCount);
|
|
minImageCount = (surfaceCapabilities.maxImageCount > 0 &&
|
|
minImageCount > surfaceCapabilities.maxImageCount) ?
|
|
surfaceCapabilities.maxImageCount :
|
|
minImageCount;
|
|
|
|
vk::SwapchainCreateInfoKHR swapChainCreateInfo {
|
|
.flags = vk::SwapchainCreateFlagsKHR(),
|
|
.surface = surface,
|
|
.minImageCount = minImageCount,
|
|
.imageFormat = swapChainSurfaceFormat.format,
|
|
.imageColorSpace = swapChainSurfaceFormat.colorSpace,
|
|
.imageExtent = swapChainExtent,
|
|
.imageArrayLayers = 1,
|
|
.imageUsage = vk::ImageUsageFlagBits::eColorAttachment,
|
|
.imageSharingMode = vk::SharingMode::eExclusive,
|
|
.preTransform = surfaceCapabilities.currentTransform,
|
|
.compositeAlpha = vk::CompositeAlphaFlagBitsKHR::eOpaque,
|
|
.presentMode = chooseSwapPresentMode(physicalDevice.getSurfacePresentModesKHR(surface)),
|
|
.clipped = true,
|
|
.oldSwapchain = nullptr,
|
|
};
|
|
|
|
swapChain = vk::raii::SwapchainKHR(device, swapChainCreateInfo);
|
|
swapChainImages = swapChain.getImages();
|
|
swapChainImageFormat = swapChainSurfaceFormat.format;
|
|
}
|
|
void createImageViews() {
|
|
swapChainImageViews.clear();
|
|
|
|
vk::ImageViewCreateInfo imageViewCreateInfo{
|
|
.viewType = vk::ImageViewType::e2D,
|
|
.format = swapChainImageFormat,
|
|
.subresourceRange = { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 }
|
|
};
|
|
|
|
for (auto image : swapChainImages) {
|
|
imageViewCreateInfo.image = image;
|
|
swapChainImageViews.emplace_back(vk::raii::ImageView(device, imageViewCreateInfo));
|
|
}
|
|
}
|
|
void createDescriptorSetLayout() {
|
|
vk::DescriptorSetLayoutBinding binding(0, vk::DescriptorType::eUniformBuffer,
|
|
1, vk::ShaderStageFlagBits::eVertex, nullptr);
|
|
vk::DescriptorSetLayoutCreateInfo layoutInfo{
|
|
.bindingCount = 1,
|
|
.pBindings = &binding,
|
|
};
|
|
descriptorSetLayout = vk::raii::DescriptorSetLayout(device, layoutInfo);
|
|
}
|
|
void createGraphicsPipeline() {
|
|
vk::raii::ShaderModule shaderModule = createShaderModule(readFile("shaders/22_shader_ubo.spv"));
|
|
|
|
vk::PipelineShaderStageCreateInfo vertShaderStageInfo = {
|
|
.stage = vk::ShaderStageFlagBits::eVertex,
|
|
.module = shaderModule,
|
|
.pName = "vertMain",
|
|
};
|
|
vk::PipelineShaderStageCreateInfo fragShaderStageInfo = {
|
|
.stage = vk::ShaderStageFlagBits::eFragment,
|
|
.module = shaderModule,
|
|
.pName = "fragMain",
|
|
};
|
|
|
|
vk::PipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};
|
|
|
|
// Vertex input
|
|
auto bindingDescription = Vertex::getBindingDescription();
|
|
auto attributeDescriptions = Vertex::getAttributeDescriptions();
|
|
vk::PipelineVertexInputStateCreateInfo vertexInputInfo{
|
|
.vertexBindingDescriptionCount = 1,
|
|
.pVertexBindingDescriptions = &bindingDescription,
|
|
.vertexAttributeDescriptionCount = attributeDescriptions.size(),
|
|
.pVertexAttributeDescriptions = attributeDescriptions.data(),
|
|
};
|
|
|
|
// Input assembly
|
|
vk::PipelineInputAssemblyStateCreateInfo inputAssembly = {
|
|
.topology = vk::PrimitiveTopology::eTriangleList,
|
|
};
|
|
|
|
// Dynamic state
|
|
std::vector<vk::DynamicState> dynamicStates = {
|
|
vk::DynamicState::eViewport,
|
|
vk::DynamicState::eScissor,
|
|
};
|
|
vk::PipelineDynamicStateCreateInfo dynamicState = {
|
|
.dynamicStateCount = static_cast<uint32_t>(dynamicStates.size()),
|
|
.pDynamicStates = dynamicStates.data(),
|
|
};
|
|
// No need to specify viewport and scissor because they will be specified dynamically
|
|
vk::PipelineViewportStateCreateInfo viewportState = {
|
|
.viewportCount = 1,
|
|
.scissorCount = 1,
|
|
};
|
|
|
|
// Rasterisation
|
|
vk::PipelineRasterizationStateCreateInfo rasterizer = {
|
|
.depthClampEnable = vk::False,
|
|
.rasterizerDiscardEnable = vk::False,
|
|
.polygonMode = vk::PolygonMode::eFill,
|
|
.cullMode = vk::CullModeFlagBits::eBack,
|
|
.frontFace = vk::FrontFace::eCounterClockwise,
|
|
.depthBiasEnable = vk::False,
|
|
.depthBiasSlopeFactor = 1.0f,
|
|
.lineWidth = 1.0f
|
|
};
|
|
|
|
// Multisampling
|
|
vk::PipelineMultisampleStateCreateInfo multisampling = {
|
|
.rasterizationSamples = vk::SampleCountFlagBits::e1,
|
|
.sampleShadingEnable = vk::False,
|
|
};
|
|
|
|
// Color blending
|
|
vk::PipelineColorBlendAttachmentState colorBlendAttachment = {
|
|
.blendEnable = vk::False,
|
|
.colorWriteMask = vk::ColorComponentFlagBits::eR |
|
|
vk::ColorComponentFlagBits::eG |
|
|
vk::ColorComponentFlagBits::eB |
|
|
vk::ColorComponentFlagBits::eA,
|
|
};
|
|
vk::PipelineColorBlendStateCreateInfo colorBlending = {
|
|
.logicOpEnable = vk::False,
|
|
.logicOp = vk::LogicOp::eCopy,
|
|
.attachmentCount = 1,
|
|
.pAttachments = &colorBlendAttachment,
|
|
};
|
|
|
|
// Pipeline layout
|
|
vk::PipelineLayoutCreateInfo pipelineLayoutInfo = {
|
|
.setLayoutCount = 1,
|
|
.pSetLayouts = &*descriptorSetLayout,
|
|
.pushConstantRangeCount = 0,
|
|
};
|
|
pipelineLayout = vk::raii::PipelineLayout(device, pipelineLayoutInfo);
|
|
|
|
// Dynamic rendering pipeline
|
|
vk::PipelineRenderingCreateInfo pipelineRenderingCreateInfo = {
|
|
.colorAttachmentCount = 1,
|
|
.pColorAttachmentFormats = &swapChainImageFormat,
|
|
};
|
|
vk::GraphicsPipelineCreateInfo pipelineInfo = {
|
|
.pNext = &pipelineRenderingCreateInfo,
|
|
.stageCount = 2,
|
|
.pStages = shaderStages,
|
|
.pVertexInputState = &vertexInputInfo,
|
|
.pInputAssemblyState = &inputAssembly,
|
|
.pViewportState = &viewportState,
|
|
.pRasterizationState = &rasterizer,
|
|
.pMultisampleState = &multisampling,
|
|
.pColorBlendState = &colorBlending,
|
|
.pDynamicState = &dynamicState,
|
|
.layout = pipelineLayout,
|
|
.renderPass = nullptr,
|
|
};
|
|
|
|
// Create pipeline
|
|
graphicsPipeline = vk::raii::Pipeline(device, nullptr, pipelineInfo);
|
|
}
|
|
void createCommandPool() {
|
|
vk::CommandPoolCreateInfo poolInfo = {
|
|
.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer,
|
|
.queueFamilyIndex = graphicsQueueIndex,
|
|
};
|
|
commandPool = vk::raii:: CommandPool(device, poolInfo);
|
|
}
|
|
void createTextureImage() {
|
|
int texWidth, texHeight, texChannels;
|
|
stbi_uc* pixels = stbi_load("textures/texture.jpg", &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
|
|
if (!pixels) {
|
|
throw std::runtime_error("failed to load texture image!");
|
|
}
|
|
|
|
vk::DeviceSize imageSize = texWidth * texHeight * 4;
|
|
|
|
vk::raii::Buffer stagingBuffer({});
|
|
vk::raii::DeviceMemory stagingBufferMemory({});
|
|
createBuffer(imageSize, vk::BufferUsageFlagBits::eTransferSrc,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostVisible,
|
|
stagingBuffer, stagingBufferMemory);
|
|
void *data = stagingBufferMemory.mapMemory(0, imageSize);
|
|
memcpy(data, pixels, imageSize);
|
|
stagingBufferMemory.unmapMemory();
|
|
|
|
stbi_image_free(pixels);
|
|
|
|
createImage(texWidth, texHeight, vk::Format::eR8G8B8A8Srgb, vk::ImageTiling::eOptimal,
|
|
vk::ImageUsageFlagBits::eTransferDst | vk::ImageUsageFlagBits::eSampled,
|
|
vk::MemoryPropertyFlagBits::eDeviceLocal, textureImage, textureImageMemory);
|
|
|
|
// Transition layout to copy data
|
|
transitionImageLayout(textureImage, vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal);
|
|
copyBufferToImage(stagingBuffer, textureImage, static_cast<uint32_t>(texWidth), static_cast<uint32_t>(texHeight));
|
|
|
|
// Transition layout to enable sampling
|
|
transitionImageLayout(textureImage, vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::eShaderReadOnlyOptimal);
|
|
}
|
|
void createTextureImageView() {
|
|
textureImageView = createImageView(textureImage, vk::Format::eR8G8B8A8Srgb);
|
|
}
|
|
void createImage(uint32_t width, uint32_t height, vk::Format format, vk::ImageTiling tiling,
|
|
vk::ImageUsageFlags usage, vk::MemoryPropertyFlags properties,
|
|
vk::raii::Image& image, vk::raii::DeviceMemory& imageMemory) {
|
|
vk::ImageCreateInfo imageInfo {
|
|
.imageType = vk::ImageType::e2D,
|
|
.format = format,
|
|
.extent = {width, height, 1},
|
|
.mipLevels = 1,
|
|
.arrayLayers = 1,
|
|
.samples = vk::SampleCountFlagBits::e1,
|
|
.tiling = tiling,
|
|
.usage = usage,
|
|
.sharingMode = vk::SharingMode::eExclusive,
|
|
};
|
|
image = vk::raii::Image(device, imageInfo);
|
|
|
|
vk::MemoryRequirements memRequirements = image.getMemoryRequirements();
|
|
vk::MemoryAllocateInfo allocInfo {
|
|
.allocationSize = memRequirements.size,
|
|
.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties)
|
|
};
|
|
imageMemory = vk::raii::DeviceMemory(device, allocInfo);
|
|
image.bindMemory(*imageMemory, 0);
|
|
}
|
|
vk::raii::ImageView createImageView(vk::raii::Image &image, vk::Format format) {
|
|
vk::ImageViewCreateInfo imageViewCreateInfo{
|
|
.image = image,
|
|
.viewType = vk::ImageViewType::e2D,
|
|
.format = format,
|
|
.subresourceRange = { vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1 }
|
|
};
|
|
return vk::raii::ImageView(device, imageViewCreateInfo);
|
|
}
|
|
void copyBufferToImage(const vk::raii::Buffer& buffer, vk::raii::Image& image, uint32_t width, uint32_t height) {
|
|
vk::raii::CommandBuffer commandBuffer = beginSingleTimeCommands();
|
|
vk::BufferImageCopy region {
|
|
.bufferOffset = 0,
|
|
.bufferRowLength = 0,
|
|
.bufferImageHeight = 0,
|
|
.imageSubresource = { vk::ImageAspectFlagBits::eColor, 0, 0, 1 },
|
|
.imageOffset = { 0, 0, 0 },
|
|
.imageExtent = { width, height, 1 }
|
|
};
|
|
commandBuffer.copyBufferToImage(buffer, image, vk::ImageLayout::eTransferDstOptimal, {region});
|
|
endSingleTimeCommands(commandBuffer);
|
|
}
|
|
void createTextureSampler() {
|
|
vk::PhysicalDeviceProperties properties = physicalDevice.getProperties();
|
|
vk::SamplerCreateInfo samplerInfo = {
|
|
.magFilter = vk::Filter::eLinear,
|
|
.minFilter = vk::Filter::eLinear,
|
|
.mipmapMode = vk::SamplerMipmapMode::eLinear,
|
|
.addressModeU = vk::SamplerAddressMode::eRepeat,
|
|
.addressModeV = vk::SamplerAddressMode::eRepeat,
|
|
.addressModeW = vk::SamplerAddressMode::eRepeat,
|
|
.anisotropyEnable = vk::True,
|
|
.maxAnisotropy = properties.limits.maxSamplerAnisotropy,
|
|
.compareEnable = vk::False,
|
|
.compareOp = vk::CompareOp::eAlways,
|
|
.borderColor = vk::BorderColor::eIntOpaqueBlack,
|
|
.unnormalizedCoordinates = vk::False,
|
|
};
|
|
textureImageSampler = vk::raii::Sampler(device, samplerInfo);
|
|
}
|
|
void createVertexBuffer() {
|
|
vk::DeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
|
|
vk::raii::Buffer stagingBuffer = nullptr;
|
|
vk::raii::DeviceMemory stagingBufferMemory = nullptr;
|
|
|
|
// Create staging buffer visible to host (CPU)
|
|
createBuffer(
|
|
bufferSize,
|
|
vk::BufferUsageFlagBits::eTransferSrc,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
|
|
stagingBuffer,
|
|
stagingBufferMemory
|
|
);
|
|
void *data = stagingBufferMemory.mapMemory(0, bufferSize);
|
|
memcpy(data, vertices.data(), (size_t)bufferSize);
|
|
stagingBufferMemory.unmapMemory();
|
|
|
|
createBuffer(
|
|
bufferSize,
|
|
vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eTransferDst,
|
|
vk::MemoryPropertyFlagBits::eDeviceLocal,
|
|
vertexBuffer,
|
|
vertexBufferMemory
|
|
);
|
|
copyBuffer(stagingBuffer, vertexBuffer, bufferSize);
|
|
}
|
|
void createIndexBuffer() {
|
|
vk::DeviceSize bufferSize = sizeof(indices[0]) * indices.size();
|
|
vk::raii::Buffer stagingBuffer = nullptr;
|
|
vk::raii::DeviceMemory stagingBufferMemory = nullptr;
|
|
|
|
// Create staging buffer visible to host (CPU)
|
|
createBuffer(
|
|
bufferSize,
|
|
vk::BufferUsageFlagBits::eTransferSrc,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
|
|
stagingBuffer,
|
|
stagingBufferMemory
|
|
);
|
|
void *data = stagingBufferMemory.mapMemory(0, bufferSize);
|
|
memcpy(data, indices.data(), (size_t)bufferSize);
|
|
stagingBufferMemory.unmapMemory();
|
|
|
|
createBuffer(
|
|
bufferSize,
|
|
vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eTransferDst,
|
|
vk::MemoryPropertyFlagBits::eDeviceLocal,
|
|
indexBuffer,
|
|
indexBufferMemory
|
|
);
|
|
copyBuffer(stagingBuffer, indexBuffer, bufferSize);
|
|
}
|
|
void createUniformBuffers() {
|
|
uniformBuffers.clear();
|
|
uniformBuffersMemory.clear();
|
|
unifromBuffersMapped.clear();
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; ++i) {
|
|
vk::DeviceSize bufferSize = sizeof(UniformBufferObject);
|
|
vk::raii::Buffer buffer({});
|
|
vk::raii::DeviceMemory bufferMem({});
|
|
createBuffer(bufferSize, vk::BufferUsageFlagBits::eUniformBuffer,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent,
|
|
buffer, bufferMem);
|
|
uniformBuffers.emplace_back(std::move(buffer));
|
|
uniformBuffersMemory.emplace_back(std::move(bufferMem));
|
|
unifromBuffersMapped.emplace_back(uniformBuffersMemory[i].mapMemory(0, bufferSize));
|
|
}
|
|
}
|
|
void createDescriptorPool() {
|
|
vk::DescriptorPoolSize poolSize(vk::DescriptorType::eUniformBuffer, MAX_FRAMES_IN_FLIGHT);
|
|
vk::DescriptorPoolCreateInfo poolInfo = {
|
|
.flags = vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet,
|
|
.maxSets = MAX_FRAMES_IN_FLIGHT,
|
|
.poolSizeCount = 1,
|
|
.pPoolSizes = &poolSize,
|
|
};
|
|
descriptorPool = vk::raii::DescriptorPool(device, poolInfo);
|
|
}
|
|
void createDescriptorSets() {
|
|
std::vector<vk::DescriptorSetLayout> layouts(MAX_FRAMES_IN_FLIGHT, *descriptorSetLayout);
|
|
vk::DescriptorSetAllocateInfo allocInfo {
|
|
.descriptorPool = descriptorPool,
|
|
.descriptorSetCount = static_cast<uint32_t>(layouts.size()),
|
|
.pSetLayouts = layouts.data(),
|
|
};
|
|
descriptorSets.clear();
|
|
descriptorSets = device.allocateDescriptorSets(allocInfo);
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; ++i) {
|
|
vk::DescriptorBufferInfo bufferInfo {
|
|
.buffer = uniformBuffers[i],
|
|
.offset = 0,
|
|
.range = sizeof(UniformBufferObject),
|
|
};
|
|
|
|
vk::WriteDescriptorSet descriptorWrite = {
|
|
.dstSet = descriptorSets[i],
|
|
.dstBinding = 0,
|
|
.dstArrayElement = 0,
|
|
.descriptorCount = 1,
|
|
.descriptorType = vk::DescriptorType::eUniformBuffer,
|
|
.pBufferInfo = &bufferInfo,
|
|
};
|
|
|
|
device.updateDescriptorSets(descriptorWrite, {});
|
|
}
|
|
}
|
|
void createCommandBuffers() {
|
|
commandBuffers.clear();
|
|
vk::CommandBufferAllocateInfo allocInfo = {
|
|
.commandPool = commandPool,
|
|
.level = vk::CommandBufferLevel::ePrimary,
|
|
.commandBufferCount = MAX_FRAMES_IN_FLIGHT,
|
|
};
|
|
commandBuffers = vk::raii::CommandBuffers(device, allocInfo);
|
|
}
|
|
void createSyncObjects() {
|
|
assert(presentCompleteSemaphores.empty() && renderFinishedSemaphores.empty() && drawFences.empty());
|
|
|
|
for (size_t i = 0; i < swapChainImages.size(); ++i) {
|
|
renderFinishedSemaphores.emplace_back(device, vk::SemaphoreCreateInfo());
|
|
}
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; ++i) {
|
|
presentCompleteSemaphores.emplace_back(device, vk::SemaphoreCreateInfo());
|
|
drawFences.emplace_back(device, vk::FenceCreateInfo{ .flags = vk::FenceCreateFlagBits::eSignaled });
|
|
}
|
|
}
|
|
void updateUniformBuffer(uint32_t currentImage) {
|
|
static auto startTime = std::chrono::high_resolution_clock::now();
|
|
|
|
auto currentTime = std::chrono::high_resolution_clock::now();
|
|
float time = std::chrono::duration<float, std::chrono::seconds::period>(currentTime - startTime).count();
|
|
|
|
UniformBufferObject ubo{};
|
|
ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f));
|
|
ubo.proj = glm::perspective(glm::radians(45.0f),
|
|
static_cast<float>(swapChainExtent.width) / static_cast<float>(swapChainExtent.height),
|
|
0.1f, 10.0f);
|
|
ubo.proj[1][1] *= -1;
|
|
|
|
memcpy(unifromBuffersMapped[currentImage], &ubo, sizeof(ubo));
|
|
}
|
|
void recordCommandBuffer(uint32_t imageIndex) {
|
|
auto &commandBuffer = commandBuffers[frameIndex];
|
|
|
|
// Begin recording the command buffer
|
|
commandBuffer.begin({});
|
|
|
|
// Before starting rendering, transition the swapchain image to COLOR_ATTACHMENT_OPTIMAL
|
|
transitionSwapChainImageLayout(
|
|
imageIndex,
|
|
vk::ImageLayout::eUndefined,
|
|
vk::ImageLayout::eColorAttachmentOptimal,
|
|
{}, // srcAccessMask (no need to wait for previous operations)
|
|
vk::AccessFlagBits2::eColorAttachmentWrite, // dstAccessMask
|
|
vk::PipelineStageFlagBits2::eColorAttachmentOutput, // srcStage
|
|
vk::PipelineStageFlagBits2::eColorAttachmentOutput // dstStage
|
|
);
|
|
|
|
vk::ClearValue clearColor = vk::ClearColorValue(0.0f, 0.0f, 0.0f, 1.0f);
|
|
vk::RenderingAttachmentInfo attachmentInfo = {
|
|
.imageView = swapChainImageViews[imageIndex],
|
|
.imageLayout = vk::ImageLayout::eColorAttachmentOptimal,
|
|
.loadOp = vk::AttachmentLoadOp::eClear,
|
|
.storeOp = vk::AttachmentStoreOp::eStore,
|
|
.clearValue = clearColor,
|
|
};
|
|
vk::RenderingInfo renderingInfo = {
|
|
.renderArea = { .offset = { 0, 0 }, .extent = swapChainExtent },
|
|
.layerCount = 1,
|
|
.colorAttachmentCount = 1,
|
|
.pColorAttachments = &attachmentInfo,
|
|
};
|
|
|
|
commandBuffer.beginRendering(renderingInfo);
|
|
commandBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, graphicsPipeline);
|
|
commandBuffer.bindVertexBuffers(0, *vertexBuffer, {0});
|
|
commandBuffer.bindIndexBuffer(*indexBuffer, 0, vk::IndexType::eUint16);
|
|
// Viewport and scissor are dynamic so we need to set them
|
|
vk::Viewport viewport = {
|
|
.x = 0.0f,
|
|
.y = 0.0f,
|
|
.width = static_cast<float>(swapChainExtent.width),
|
|
.height = static_cast<float>(swapChainExtent.height),
|
|
.minDepth = 0.0f,
|
|
.maxDepth = 1.0f,
|
|
};
|
|
commandBuffer.setViewport(0, viewport);
|
|
commandBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), swapChainExtent));
|
|
|
|
commandBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout, 0,
|
|
*descriptorSets[frameIndex], nullptr);
|
|
|
|
// Issue the draw command
|
|
commandBuffer.drawIndexed(indices.size(), 1, 0, 0, 0);
|
|
|
|
commandBuffer.endRendering();
|
|
|
|
// After rendering, transition the swapchain image to PRESENT_SRC
|
|
transitionSwapChainImageLayout(
|
|
imageIndex,
|
|
vk::ImageLayout::eColorAttachmentOptimal,
|
|
vk::ImageLayout::ePresentSrcKHR,
|
|
vk::AccessFlagBits2::eColorAttachmentWrite, // srcAccessMask
|
|
{}, // dstAccessMask
|
|
vk::PipelineStageFlagBits2::eColorAttachmentOutput, // srcStage
|
|
vk::PipelineStageFlagBits2::eBottomOfPipe // dstStage
|
|
);
|
|
|
|
// Finish recording the command buffer
|
|
commandBuffer.end();
|
|
}
|
|
void createBuffer(
|
|
vk::DeviceSize size,
|
|
vk::BufferUsageFlags usage,
|
|
vk::MemoryPropertyFlags properties,
|
|
vk::raii::Buffer &buffer,
|
|
vk::raii::DeviceMemory &bufferMemory
|
|
) {
|
|
vk::BufferCreateInfo bufferInfo = {
|
|
.size = size,
|
|
.usage = usage,
|
|
.sharingMode = vk::SharingMode::eExclusive,
|
|
};
|
|
buffer = vk::raii::Buffer(device, bufferInfo);
|
|
|
|
vk::MemoryRequirements memRequirements = buffer.getMemoryRequirements();
|
|
vk::MemoryAllocateInfo memAllocateInfo = {
|
|
.allocationSize = memRequirements.size,
|
|
.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties)
|
|
};
|
|
bufferMemory = vk::raii::DeviceMemory(device, memAllocateInfo);
|
|
buffer.bindMemory(bufferMemory, 0);
|
|
}
|
|
void copyBuffer(vk::raii::Buffer &srcBuffer, vk::raii::Buffer &dstBuffer, vk::DeviceSize size) {
|
|
vk::raii::CommandBuffer commandCopyBuffer = beginSingleTimeCommands();
|
|
commandCopyBuffer.copyBuffer(*srcBuffer, *dstBuffer, vk::BufferCopy(0, 0, size));
|
|
endSingleTimeCommands(commandCopyBuffer);
|
|
}
|
|
vk::raii::CommandBuffer beginSingleTimeCommands() {
|
|
vk::CommandBufferAllocateInfo allocInfo {
|
|
.commandPool = commandPool,
|
|
.level = vk::CommandBufferLevel::ePrimary,
|
|
.commandBufferCount = 1
|
|
};
|
|
vk::raii::CommandBuffer commandBuffer = std::move(device.allocateCommandBuffers(allocInfo).front());
|
|
|
|
vk::CommandBufferBeginInfo beginInfo{ .flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit };
|
|
commandBuffer.begin(beginInfo);
|
|
|
|
return commandBuffer;
|
|
}
|
|
|
|
void endSingleTimeCommands(vk::raii::CommandBuffer& commandBuffer) {
|
|
commandBuffer.end();
|
|
|
|
vk::SubmitInfo submitInfo{ .commandBufferCount = 1, .pCommandBuffers = &*commandBuffer };
|
|
graphicsQueue.submit(submitInfo, nullptr);
|
|
graphicsQueue.waitIdle();
|
|
}
|
|
uint32_t findMemoryType(uint32_t typeFilter, vk::MemoryPropertyFlags properties) {
|
|
vk::PhysicalDeviceMemoryProperties memProperties = physicalDevice.getMemoryProperties();
|
|
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
|
|
if ((typeFilter & (1 << i) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties)) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
throw std::runtime_error("failed to find suitable memory type!");
|
|
}
|
|
void transitionImageLayout(const vk::raii::Image &image, vk::ImageLayout oldLayout, vk::ImageLayout newLayout) {
|
|
vk::raii::CommandBuffer commandBuffer = beginSingleTimeCommands();
|
|
|
|
vk::ImageMemoryBarrier barrier{
|
|
.oldLayout = oldLayout,
|
|
.newLayout = newLayout,
|
|
.image = image,
|
|
.subresourceRange = {vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1}
|
|
};
|
|
|
|
vk::PipelineStageFlags sourceStage;
|
|
vk::PipelineStageFlags destinationStage;
|
|
|
|
if (oldLayout == vk::ImageLayout::eUndefined && newLayout == vk::ImageLayout::eTransferDstOptimal)
|
|
{
|
|
barrier.srcAccessMask = {};
|
|
barrier.dstAccessMask = vk::AccessFlagBits::eTransferWrite;
|
|
|
|
sourceStage = vk::PipelineStageFlagBits::eTopOfPipe;
|
|
destinationStage = vk::PipelineStageFlagBits::eTransfer;
|
|
}
|
|
else if (oldLayout == vk::ImageLayout::eTransferDstOptimal && newLayout == vk::ImageLayout::eShaderReadOnlyOptimal)
|
|
{
|
|
barrier.srcAccessMask = vk::AccessFlagBits::eTransferWrite;
|
|
barrier.dstAccessMask = vk::AccessFlagBits::eShaderRead;
|
|
|
|
sourceStage = vk::PipelineStageFlagBits::eTransfer;
|
|
destinationStage = vk::PipelineStageFlagBits::eFragmentShader;
|
|
}
|
|
else
|
|
{
|
|
throw std::invalid_argument("unsupported layout transition!");
|
|
}
|
|
|
|
commandBuffer.pipelineBarrier(sourceStage, destinationStage, {}, {}, nullptr, barrier);
|
|
endSingleTimeCommands(commandBuffer);
|
|
}
|
|
void transitionSwapChainImageLayout(
|
|
uint32_t imageIndex,
|
|
vk::ImageLayout oldLayout,
|
|
vk::ImageLayout newLayout,
|
|
vk::AccessFlags2 srcAccessMask,
|
|
vk::AccessFlags2 dstAccessMask,
|
|
vk::PipelineStageFlags2 srcStageMask,
|
|
vk::PipelineStageFlags2 dstStageMask
|
|
) {
|
|
vk::ImageMemoryBarrier2 barrier = {
|
|
.srcStageMask = srcStageMask,
|
|
.srcAccessMask = srcAccessMask,
|
|
.dstStageMask = dstStageMask,
|
|
.dstAccessMask = dstAccessMask,
|
|
.oldLayout = oldLayout,
|
|
.newLayout = newLayout,
|
|
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
|
|
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
|
|
.image = swapChainImages[imageIndex],
|
|
.subresourceRange = {
|
|
.aspectMask = vk::ImageAspectFlagBits::eColor,
|
|
.baseMipLevel = 0,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = 0,
|
|
.layerCount = 1
|
|
}
|
|
};
|
|
vk::DependencyInfo dependencyInfo = {
|
|
.dependencyFlags = {},
|
|
.imageMemoryBarrierCount = 1,
|
|
.pImageMemoryBarriers = &barrier
|
|
};
|
|
commandBuffers[frameIndex].pipelineBarrier2(dependencyInfo);
|
|
}
|
|
void cleanupSwapChain() {
|
|
swapChainImageViews.clear();
|
|
swapChain = nullptr;
|
|
}
|
|
void recreateSwapChain() {
|
|
int width = 0, height = 0;
|
|
glfwGetFramebufferSize(window, &width, &height);
|
|
while (width == 0 || height == 0) {
|
|
glfwGetFramebufferSize(window, &width, &height);
|
|
glfwWaitEvents();
|
|
}
|
|
|
|
device.waitIdle();
|
|
cleanupSwapChain();
|
|
createSwapChain();
|
|
createImageViews();
|
|
}
|
|
[[nodiscard]] vk::raii::ShaderModule createShaderModule(const std::vector<char> &code) const {
|
|
vk::ShaderModuleCreateInfo createInfo {
|
|
.codeSize = code.size() * sizeof(char),
|
|
.pCode = reinterpret_cast<const uint32_t *>(code.data()),
|
|
};
|
|
|
|
return vk::raii::ShaderModule{device, createInfo};
|
|
}
|
|
vk::SurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<vk::SurfaceFormatKHR>& availableFormats) {
|
|
for (const auto& availableFormat : availableFormats) {
|
|
if (availableFormat.format == vk::Format::eB8G8R8A8Srgb && availableFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear) {
|
|
return availableFormat;
|
|
}
|
|
}
|
|
|
|
return availableFormats[0];
|
|
}
|
|
vk::PresentModeKHR chooseSwapPresentMode(const std::vector<vk::PresentModeKHR>& availablePresentModes) {
|
|
for (const auto& availablePresentMode : availablePresentModes) {
|
|
if (availablePresentMode == vk::PresentModeKHR::eMailbox) {
|
|
return availablePresentMode;
|
|
}
|
|
}
|
|
|
|
return vk::PresentModeKHR::eFifo;
|
|
}
|
|
vk::Extent2D chooseSwapExtent(const vk::SurfaceCapabilitiesKHR& capabilities) {
|
|
if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
|
|
return capabilities.currentExtent;
|
|
}
|
|
|
|
int width, height;
|
|
glfwGetFramebufferSize(window, &width, &height);
|
|
|
|
return {
|
|
std::clamp<uint32_t>(width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width),
|
|
std::clamp<uint32_t>(height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height),
|
|
};
|
|
}
|
|
uint32_t findQueueFamilies(vk::raii::PhysicalDevice physicalDevice) {
|
|
// find the index of the first queue family that supports graphics
|
|
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
|
|
|
|
// get the first index into queueFamilyProperties which both supports graphics and present
|
|
uint32_t queueIndex = ~0;
|
|
for (uint32_t qfpIndex = 0; qfpIndex < queueFamilyProperties.size(); ++qfpIndex) {
|
|
if ((queueFamilyProperties[qfpIndex].queueFlags & vk::QueueFlagBits::eGraphics) &&
|
|
physicalDevice.getSurfaceSupportKHR(qfpIndex, *surface)) {
|
|
queueIndex = qfpIndex;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (queueIndex == ~0) {
|
|
throw std::runtime_error("Could not find a queue for graphics and present -> terminating");
|
|
}
|
|
|
|
return queueIndex;
|
|
}
|
|
|
|
uint32_t frameIndex = 0;
|
|
bool framebufferResized = false;
|
|
GLFWwindow *window;
|
|
vk::raii::Context context;
|
|
vk::raii::Instance instance = nullptr;
|
|
vk::raii::PhysicalDevice physicalDevice = nullptr;
|
|
uint32_t graphicsQueueIndex;
|
|
vk::raii::Device device = nullptr;
|
|
vk::raii::Queue graphicsQueue = nullptr;
|
|
vk::raii::SurfaceKHR surface = nullptr;
|
|
vk::raii::SwapchainKHR swapChain = nullptr;
|
|
vk::SurfaceFormatKHR swapChainSurfaceFormat;
|
|
vk::Extent2D swapChainExtent;
|
|
vk::Format swapChainImageFormat = vk::Format::eUndefined;
|
|
std::vector<vk::Image> swapChainImages;
|
|
std::vector<vk::raii::ImageView> swapChainImageViews;
|
|
vk::raii::DescriptorSetLayout descriptorSetLayout = nullptr;
|
|
vk::raii::DescriptorPool descriptorPool = nullptr;
|
|
std::vector<vk::raii::DescriptorSet> descriptorSets;
|
|
vk::raii::PipelineLayout pipelineLayout = nullptr;
|
|
vk::raii::Pipeline graphicsPipeline = nullptr;
|
|
vk::raii::CommandPool commandPool = nullptr;
|
|
vk::raii::Buffer vertexBuffer = nullptr;
|
|
vk::raii::DeviceMemory vertexBufferMemory = nullptr;
|
|
vk::raii::Buffer indexBuffer = nullptr;
|
|
vk::raii::DeviceMemory indexBufferMemory = nullptr;
|
|
vk::raii::Image textureImage = nullptr;
|
|
vk::raii::DeviceMemory textureImageMemory = nullptr;
|
|
vk::raii::ImageView textureImageView = nullptr;
|
|
vk::raii::Sampler textureImageSampler = nullptr;
|
|
std::vector<vk::raii::Buffer> uniformBuffers;
|
|
std::vector<vk::raii::DeviceMemory> uniformBuffersMemory;
|
|
std::vector<void *> unifromBuffersMapped;
|
|
std::vector<vk::raii::CommandBuffer> commandBuffers;
|
|
std::vector<vk::raii::Semaphore> presentCompleteSemaphores;
|
|
std::vector<vk::raii::Semaphore> renderFinishedSemaphores;
|
|
std::vector<vk::raii::Fence> drawFences;
|
|
};
|
|
|
|
int main() {
|
|
HelloTriangleApplication app;
|
|
|
|
try {
|
|
app.run();
|
|
} catch (const std::exception &e) {
|
|
std::cout << e.what() << std::endl;
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|